All posts by didiercoeurnelle

Heales Monthly Newsletter. The death of death N°171. July 2023. How longevitists could share their health and research data

Everything in human history starts out as Science-Fiction. For thousands of years, man has dreamed of flying, and today we fly without paying attention. (…) If we don’t destroy the planet first, what we’re about to see is phenomenal.

(Journalist) So it’s good news? It’s great news. We’re going to merge with technology, which will allow us to live longer and make us smarter. We urgently need to use AI to solve our problems. (…)

-Jeanette Winterson, novelist (translation, source)


This month’s theme: How longevitists could share their health and research data


Introduction

Written language was probably invented to record data more than five thousand years ago. In 2023, each day, we store more data than was conserved during the whole history of humanity before the 20th century. Today, about 30 % of all this data is health data. Medical data about older people, especially in rich countries, is stored for decades in hospitals, and medical laboratories,… and is generally available electronically. It contains detailed data available about hundreds of millions of people. Even better, we now have basic information for the large majority of the inhabitants of the planet (date of birth, vaccination, number of children, main disease and at the end of life, cause and date of death, …). 

In other words, we do not only need data, but first, we need to better share and curate health data. To analyze those data and progress modestly against senescence, we already have tools. In other words, we do not only need better AI for health, we need to have better access to it.

Those questions were already approached in a newsletter 3 years ago. Fortunately, progress is fast, among other things at the European level and also -of course- concerning AI tools.

Access to data: Right to share Scientific Advancement and Intellectual Property Rights

The right to health is a universal right, one of the basic conditions for the right to life. Article 27 of the Universal Declaration of Human Rights establishes the right of everyone to « share in scientific advancement and its benefits ». Similarly, Article 15 of the International Covenant on Economic, Social, and Cultural proclaims the right to « enjoy the benefits of scientific progress and its applications ».

However, international conventions and national laws also create rights related to the protection of the interests of the authors of scientific work. In the medical field, this concerns patents, but also many other complicated rules related to intellectual property.

In theory, patents exist to make an invention known to everybody while protecting the rights of inventors and encouraging them to pursue as many inventions as possible. Practically, concerning medical research, investors generally use it to sell drugs and products invented by others. The information related to the results is often kept partly secret, so that it is more difficult for others to violate the patent rights, but also to create similar or better products.

Concerning data related to the research:

  • « Positive » results will be only made public as much as absolutely necessary for the patents. Worst, they will often only be made public when the patent is available because if the information is communicated, the patent could be refused.
  • « Negative » results will not be made public because they are not useful for the patents. Worst, they will often be kept secret because of bad publicity related to « failures » of the research.

Privacy, security, informed consent

In this part of the newsletter, we will mainly approach questions related to the European Union and the USA. China and other countries approach these situations in very different ways.

In theory, most European citizens should have access to their own health data. They should also have the right not to share it without informed consent thanks to the famous General Data Protection Regulation (GDPR). Some categories of data are better protected because they are more « sensitive » and health data is among those categories. Finally,  in theory, informed consent is not necessary to use health data in some circumstances, one of them is scientific research.

However, practically in many European places, the situation is very different and can be summarized as:

  • The citizens often do not have access to their own medical data in a simple way. In Belgium, for example, the right to access files does exist, but not yet the right to access an electronic file.
  • The citizens do not have the opportunity to participate in medical experimentation and share knowledge scientifically, even if he or she wishes to do so out of personal or collective interest and even if he or she has given explicit informed consent. It is possible to participate in clinical studies, but in most cases, the results will not be shared or will be patented.
  • Researchers do not have access to the detailed health data of most citizens and they have often to pay to access information.
  • Medical data is often the subject of opaque and self-interested commercial transactions. As indicated above, « positive » results can be kept secret to be sold later. « Negative results » can be kept private, because they are not helpful and even could be bad for some companies selling some products.
  • The development of research using artificial intelligence and « massive medical data » is slowed down, as biased and sold data potentially contains more inaccuracies.

In the USA, the situation is well described by the renowned lawyer Orly Lobel: Privacy—and its pervasive offshoot, the NDA (non-disclosure agreement)—has also evolved to shield the powerful and rich against the public’s right to know. (…) But there is much more health information that needs to be collected, and privileging privacy may be bad for your health.

Curation

Data curation is a process that improves data that doesn’t meet a quality standard due to missing or incorrect values, thereby reducing the amount of unusable data. This process includes activities like data selection, classification, validation, and remediation of disparate data that comes from multiple sources.

The curation of health data is extremely complicated

There is no single system. Healthcare data originates from multiple sources—and to/from different departments or organizations. Healthcare data exists in myriad formats: paper, digital, images, videos, text, numeric, and more, with little or no standardization. Data structure (or lack thereof) varies.

Some of the data in a health record is entered and captured into fields that can be validated and aggregated, but other information like free text and notes cannot be easily categorized. 

The data is variable and complex. Information from claims data is more standardized; however, not complete as it does not tell the full patient story. But clinical data is more variable and subjective to provider interpretation.

Regulatory requirements are constantly changing. Reporting requirements for agencies continue to evolve and increase, making some data or transmission modes obsolete or less valuable.

Conclusion: What could longevists do?

We live in fascinating times. We have more data than ever. Thanks to the fast progress of AI (and potentially AGI), the search for therapies thanks to data is considerably facilitated. However, due to privacy and patent rules and profit constraints, we are not able to collect and curate enough health data.

Longevists should now publish more information on public places with as much information about how the data was collected and curated as possible.

In the longer term, we could collectively create a system that longevists and scientists can trust, managed by a non-profit organization where by default (opt-out) health data (anonymized or pseudonymized) would be stored and used for research purposes only.

The ultimate goal is, of course, to enable everyone to want to live longer, healthier lives.


The good news of the month:  Discovery of chemical means to reprogram cells to a younger state. Genetic treatment improves cognitive function for old monkeys.


Using Yamanaka factors as the basis, a research team at Harvard Medical School recently published a study showing that they have identified six different chemical cocktails, which, in less than a week restore a youthful genome-wide transcript profile and reverse transcriptomic age without compromising cellular identity.


The next important step would be to introduce rejuvenated cells in old mice (or other animals) and measure their lifespan compared to a control group.

A study published in Aging Nature establishes that recombinant Klotho Treatment Improves Cognitive Function in Old Rhesus Macaques. This gives very good hope that future rejuvenation genetic treatments for humans could not only slow down and hopefully later rejuvenate our bodies but also our brains.    


For more information

Heales Monthly Newsletter. The death of death N°170. June 2023. Longevity, Blue Zones, and Adapted Housing

This doesn’t mean we won’t die. But all age-related ailments will one day be eradicated. We’ll be able to stay younger for longer, »

Jean-Marc Lemaitre, Director of Research at Inserm and co-director of the Institute of Regenerative Medicine and Biotherapies in Montpellier. (Translation. Le Figaro. June 18, 2023).


This month’s theme: Longevity, Blue Zones, and Adapted Housing


Introduction

According to the WHO, aging, as it develops now, presents both challenges and opportunities. It will increase demand for primary health care and long-term care, require a larger and better-trained workforce, and intensifies the need for physical and social environments to be made more age-friendly. 

Yet, these investments can enable the many contributions of older people – whether it be within their family, to their local community (e.g., as volunteers or within the formal or informal workforce), or society more broadly. Societies that adapt to this changing demographic and invest in healthy aging can enable individuals to live both longer and healthier lives and for societies to reap the dividends.

Blue Zones (already approached in a newsletter in 2021)

The island of Okinawa, Japan; parts of Sardinia; Nicoya, Costa Rica; Ikaria, Greece, and Loma Linda, California are dubbed blue zones (a concept coined in 2005,) where people live the longest and they are healthiest: The concept of blue zones grew out of the demographic work done by Gianni Pes and Michel Poulain outlined in the Journal of Experimental Gerontology, identifying Sardinia as the region of the world with the highest concentration of male centenarians (even if extreme ages could also be explained by bad birth data).

Whilst diet, exercise, and sleep are key factors in longevity, there are other lifestyle traits that Blue Zone inhabitants follow. Having a good social network is intertwined with Blue Zone communities and you will often find grandparents still living with their families. Studies have shown that those who look after their grandchildren are more likely to live longer. Similar to this, communities have strong social networks and each of these lifestyle factors has been linked to living a longer and healthier life.

In addition to exercising and following an adequate diet, sleep is another deciding factor in longevity. Blue Zone inhabitants ensure they get enough sleep during the night and you will often find them taking short naps during the day. In Blue Zones, people tend to listen to their bodies, rather than having set sleeping hours. They sleep as much as their body tells them to. “They discovered that naps as short as twenty-six minutes in length still offered a 34 percent improvement in task performance and more than a 50 percent increase in overall alertness.”

In Blue Zones, exercise is built into everyday life, rather than having a set time for the gym, or to go on a hike. Inhabitants exercise through their daily tasks such as cooking, walking, and gardening. A study was done on men living in Sardinia and it found that raising their farm animals, living on steep slopes, and walking long distances to work was associated with living longer. Benefits from other studies have shown that exercise reduces the risk of cancer, heart disease, and death overall.

Fasting is common in those communities. Intermittent fasting is one of the most well-known types. This involves fasting for certain hours of the day, particular days of the week, or consecutive days of the month. Fasting has been shown to lower blood pressure, reduce weight, and lower cholesterol.

Those who live in Blue Zones often eat a diet that is heavily plant-based. Typically, most of the population are not vegetarians but will limit their meat consumption to around 5 times a month. Their diets tend to be 95% plant-based and they contain vast amounts of vegetables, legumes, whole grains, olive oil, and nuts. In places such as Icaria and Sardinia, inhabitants will often eat substantial amounts of fresh fish. This tends to be high in Omega 3, which is important for keeping your brain and heart healthy. Commonly, those living in Blue Zones follow a calorie-restricted diet, which has been shown to increase longevity. Eating too many calories can lead to weight gain and chronic diseases.

Variety of Retirement Houses

If we were able to live in perfect housing for all who live, how many years of (healthy) life expectancy would we win? Are retirement houses better places for a longer life than being at home with (younger) family members? Or is it the other way around?

Retirement Villages are larger settlements that have been established as an important form of housing provision for older people in the USA, Australia, New Zealand, and South Africa for the last forty years or more, and in some cases, particularly in Florida and Arizona, these settlements can be very large indeed with up to 5000 dwellings. This scale of settlement, a possibility in areas where land is relatively cheap and where planning laws are relatively unrestrictive, means that lavish communal facilities –  golf courses, pools, tennis courts, fitness centers, and much else – can be economically provided and it is these facilities which generate demand for such housing, particularly among the younger retired. Downsizing for those in their late 50s is very much more common in the USA than it is for instance in the UK and this trend is reinforced both by the fact that US  local taxes are very much lower out of town and by the huge climatic advantages that Arizona and Florida can offer.

Another huge advantage of larger retirement settlements is that care can be provided very flexibly as residents get older and frailer either within individual homes by care workers operating from a central hub or in care homes and supported housing provided within the overall retirement complex.

Independent Living services are supposed to offer residents the freedom to live their lives as they see fit, to accommodate their residents’ unique needs. Independent Living is meant to combine the familiar comforts of home with the excitement of new experiences.

Study on personal control and aging in a nursing home, residents who were instructed to think of themselves as more independent and had more responsibility for their daily activities, rather than relying purely on caregiver or nursing staff, lived longer than those who were treated just as nicely but were not provided with activities that would increase their perceived independence. The study demonstrated a significant improvement in the experimental group over the comparison group in alertness, active participation, and a general sense of well-being. 

In a ‘counterclockwise’ study in 1979, the design included eight older men who lived together for 5 days on a retreat as if they were living 20 years back in time (ie, in 1959). This experience resulted in improvements over the baseline on several measures. Hearing, memory, and grip strength improved. 

This collective environment could be also the ideal place for collective studies of new treatments for longevity. This happens far from enough yet, however.

Conclusion

Our environment contributes strongly to the length of our lives. One important aspect is the level of wealth, but many other aspects are important as well. The USA is by far the country with the most medical scientists and the biggest part in percentage and in absolute terms of the GDP used for health. However, life expectancy in the US is far behind most European countries and Canada, but also in some poorer countries.

This means that significant progress toward a longer, healthier life does not require major funding. But we do need more research, more data, and more clinical trials with well-informed elderly people to « reuse » what can be reused, and also to detect/debunk sometimes over-optimistic visions. These studies could also help to detect « weak signals » that could lead to more radical developments in longevity.


The good news of the month:  Taurine supplementation slows aging and extends lifespan in mice


Taurine is an acid widely distributed in animal and human tissues. The concentration diminishes with age. It is now established that supplementation is useful for healthy longevity for mice. A publication in Science mentions that the median life span of taurine-treated mice increased by 10 to 12%, and life expectancy at 28 months increased by about 18 to 25%. 

In this domain, like in many others, clinical trials on well-informed aged volunteers should begin fast.


For more information

Heales Monthly Newsletter. The death of death N°169. May 2023. Declining Immunity in Older Population

 

There’s no shame in waging war on old age (…) Conquering diseases that appear among elderly people will eventually make life better for everyone Martha Giill. The Guardian May 20, 2023.


This month’s theme: Declining Immunity in Older Population


Introduction

Our bodies would be incredibly fragile without an immune system. The capacity to distinguish between « good and bad », friend or enemy » is extraordinary. Sometimes, this system is not able powerful or clever enough to stop « unamical aliens ». Sometimes, the system attacks bodies that are not enemies. Sadly, the number of those inefficiencies rises with age and is one of the reasons we die of diseases related to old age.

The effects of the aging immune system (immunosenescence) confer immune dysregulation and have both cellular and humoral aspects. Studies show depletion in lymphocyte reserve with increasing age, in particular with fewer naive T cells (not yet exposed to antigens).

Serum levels of lgG and lgA are increased with age, which is conducive to protecting against viral and bacterial infections effectively in older people. Although the generation of naive T/B cells continues to decline, the adaptive immune system adjusts to age-related changes and protects the body from most pathogens. Only later in life does the immune function decline gradually, which increases morbidity and mortality in the elderly 

Differences in the immune system of Elderly and Centenarians

Compared with the elderly, centenarians have more anti-inflammatory molecules, cytotoxic T cells, highly differentiated CD8+T cells and naive B cells, and well-preserved Natural Killer cells, which would be the hallmark of « successful » aging. In centenarian offspring, the number of B cells decreases significantly, but naive B cells and IgM increase, which might be one of the reasons for resisting infection and prolonging lives.

As one grows older, your immune system does not work as well. The following immune system changes may occur: The immune system responds slower. It increases your risk of getting sick. Vaccines don’t work as well or for as long. An autoimmune disorder may develop. This is where the immune system mistakenly attacks and damages or destroys healthy body tissue. Dysfunction of the immune system with age creates inflammation called inflammaging. Healing is slower as there are fewer immune cells in the body to bring about healing and the immune system’s ability to detect and correct cell defects also declines. This results in an increased risk of cancer.

The decline in Thymus; Affects the B and T cell Production

The effects of aging on the immune system are widespread and affect the rate at which naive B and T cells are produced as well as the composition and quality of the mature lymphocyte pool. Declines in lymphopoiesis are influenced by age-related changes in the environment. The precise, age-related environmental factors that result in the depletion of lymphoid-biased HSCs have not been identified, although changes in levels of transforming growth factor β-1 might be involved

At birth, the immune system is equipped with an enormously diverse repertoire of antigen-reactive T and B cells, all of which are so infrequent that they cannot protect the host. Thus, as humans age and are exposed to infectious organisms and cancerous cells, antigen-specific lymphocytes need to expand massively in frequency and switch from a highly proliferative naive cell into a less proliferative effector and memory cell.

Aging is associated with several comorbidities that finally lead to organ failure and death. With the progressive deterioration of protective immunity, older individuals become susceptible to cancers and infections). Interestingly, aging is also associated with an increased incidence of inflammatory disease, most notably cardiovascular disease). Many of the degenerative diseases of the elderly, such as Alzheimer’s disease, Parkinson’s disease, and osteoarthritis, have a vital component of tissue-damaging inflammation. Similarly, the production of autoantibodies is much more likely to occur in older individuals. In essence, immune aging is associated with declining protective immunity combined with an increased incidence of inflammatory disease. There are two main approaches to T cell-based immunotherapy: HLA-restricted and HLA-non-restricted immunotherapy. Significant progress has been made in T cell-based immunotherapy over the past decade, using naturally occurring or genetically engineered T cells to target cancer antigens in hematological malignancies and solid tumors. However, limited specificity, longevity, and toxicity have limited success rates. One of the few positive aspects of aging is that a long life exposes the body to many different pathogens and so enables this body to create more specific antibodies. 

Older adults age 65 or older represent the growing majority of patients diagnosed with cancer. However, older adults are under-represented in clinical trials in general, as well as in the landmark studies that led to the approval of these immunotherapy agents. Because of increasing age, multimorbidity, and impaired functional status, many of these patients seen in community-based oncology practices are not eligible for such studies. Thus, the results of these studies are difficult to generalize to an older patient population with these competing risks. 

TRIIM study was held at Stanford University by Gregory M. Fahy and his team from 2014 to 2015 with two cohorts. The main aim was to regenerate the thymus with a novel drug combination of hormones like Growth Hormone and DHEA (Dehydroepiandrosterone), as well as Metformin. The results showed protective immunological changes, improved risk indices for many age-related diseases, and a mean epigenetic age approximately 1.5 years less than baseline after 1 year of treatment (−2.5-year change compared to no treatment at the end of the study). Using an epigenetic clock called GrimeAge, they also showed a 2-year decrease in epigenetic vs. chronological age that persisted six months after discontinuing treatment

Conclusion

We all saw that the elderly with COVID-19 showed much more rapid clinical progress, high incidence, and mortality compared to the younger population. This was accompanied by heavy systemic inflammation and tissue damage, which would be related to immunosenescence. 

Boosting the immune system by regularly exercising, eating healthy, and suppressing the use the alcohol and smoking can decrease the rate of aging of the immune system. Taking safety measures to prevent injuries and falls is also important as a weak immune system can slow the healing of wounds. In the longer term, we need therapies able to rejuvenate the immune system, especially the thymus. 


Good News of the Month: Dior wants to reverse old age.


Dior announced the creation of an International Reverse Aging Scientific Advisory Board (RASAB). The first goal is to rejuvenate the skin, but the longer-term goal is the rejuvenation of the whole body. Dior has an entire team dedicated to this goal.


For more information

Heales monthly newsletter. The death of death N°168. March-April 2023. Organizations for Healthy Longevity

 

It’s likely that we’re just another 6 years away from the point that the general public will hit longevity escape velocity.

Peter H. Diamandis, tweet, March 14 2023


This month’s theme: Organizations for Healthy Longevity


Introduction

From small startups and NGOs to enormous private and public organizations, the field of longevity institutions is large and changing constantly.

In this newsletter, we will give you a list of the main groups divided into categories. Many of them are active in more than one category, and the choice of the category is often subjective. For each organization, you will find a few words of explanation, often with the name of the most well-known representative(s). Should, in your opinion, an important organization be missing, let us know, Heales will probably have a longer list update.

 

Very big organizations

These are the biggest organizations in the field in terms of investments announced. We speak here about billions of dollars. The organization that only financing activities are mentioned in the category « funding organizations »

  • Google Calico. Focusing on both basic research and the translation of our discoveries into new interventions that can help people live healthier, and maybe longer, lives.
  • Chan Zuckerberg Initiative (not « officially » longevity). It was founded in 2015 to help solve some of society’s toughest challenges — from eradicating disease and improving education to addressing the needs of our local communities.
  • Altos Labs. Restore cell health and resilience through cellular rejuvenation programming to reverse disease, injury, and disabilities that can occur throughout life.

Clinical Trials

These organizations are really testing therapies on humans or on animals or planning to do so very soon

  • BioViva Science (Liz Parrish). BioViva is committed to lengthening healthy human lifespans with AAV and CMV gene therapy (works with Integrated Health Systems
  • Longevity Escape Velocity  Foundation. Exists to proactively identify and address the most challenging obstacles on the path to the widespread availability of genuinely effective treatments to prevent and reverse human age-related disease. 
  • Rejuvenate Bio (George Church). Will make dogs (and later humans) “younger » by adding new DNA instructions to their bodies.
  • Dog Aging Project  The goal of the Dog Aging Project is to understand how genes, lifestyle, and environment influence aging. We want to use that information to help people increase their healthspan, the period of life spent free from disease.
  • Loyal for Dogs (Celine Halioua). Loyal is a clinical-stage veterinary medicine company developing drugs intended to extend the health span and lifespan of. 

Public organizations

Sadly, not one public organization in the world has the explicit goal of extending the maximal healthy lifespan of humans. But a few public organizations work actively on aging. 

  • European Health Data Space (EHDS). Support individuals to take control of their health data, support the use of health data for better healthcare delivery, better research, innovation, and policy making, and enables the EU to make full use of the potential offered by a safe and secure exchange, use and reuse of health data
  • National Institute of Aging (USA). Lead a broad scientific effort to understand the nature of aging and to extend healthy, active years of life. The Interventions Testing Program (ITP) is a peer-reviewed program designed to identify agents that extend the lifespan and health span in mice.
  • Institut Pasteur de Lille, Founded in 2003 by Prof Miroslav Radman and Prof Marija Alačević, is a research center, which mobilizes 34 research teams and aims to decipher the essential physiopathological mechanisms of the most impacting diseases,  particularly infectious ones, to understand these diseases, slow down their development and imagine the treatments of tomorrow.

Start-ups

Many start-ups as an explicit goal to extend the healthy life expectancy of humans. In this list, we mention only those who progressed already or seem to be able to progress in the relatively near future. Of course, these are for profit-organizations, which means they often sell products, have non-disclosure agreements, and want to create profitable synergies with others. 

  • Retro Biosciences. The mission is to add 10 years to a healthy human lifespan We’re starting with cellular reprogramming, autophagy & plasma-inspired therapeutics.
  • Apollo Ventures (Alexandra Bause and James Peyer). Apollo Health Ventures develops interventions with the potential to prevent or reverse age-related diseases and extend a healthy human lifespan.
  • NewLimit (Brian Armstrong and Blake Byers). Biotechnology company working to radically extend the human health span through epigenetic reprogramming. 
  • Oisin Biotechnologies. A startup aiming to rid bodies of senescent cells using gene therapy (founded by the SENS Foundation).
  • Rejuve (Ben Goertzel). The AI Longevity Network builds a decentralized network of researchers, clinics, and data contributors working together to arrive at breakthrough discoveries in the fight against aging while making the resulting solutions affordable and accessible for all
  • Deep Longevity (Alexander Zhavoronkov, see also In Silico). Developing explainable artificial intelligence systems to track the rate of aging at the molecular, cellular, tissue, organ, system, physiological, and psychological levels. 
  • In Silico Medicine (financed by Deep Knowledge Ventures). The mission is to extend healthy productive longevity by transforming drug discovery and development with artificial intelligence software, significantly reducing the time and cost to bring life-saving medications to patients (Deep Knowledge Life Sciences, Deep Knowledge Analytics – DKA Biogerontology Research Foundation (BRF), Aging Analytics Agency) (See also Longevity International, Longevity book (Dmitry Kaminskiy), Longevity A.I. Consortium.

Institutes and Research Centers

These organizations work on the study of aging

  • Salk Institute (Juan Carlos Izpisua Belmonte). The Institute is an independent nonprofit organization and architectural landmark: small by choice, intimate by nature, and fearless in the face of any challenge. Be it cancer or Alzheimer’s, aging, or diabetes.
  • Buck Institute for Research on Aging, Mission is to end the threat of age-related disease for this and future generations.
  • Glenn Consortium for Research in Aging (11 centers). To extend the healthy years of life through research on mechanisms of biology that govern normal human aging and its related physiological decline, to translate research into interventions.
  • Life Biosciences (David Sinclair and Nir Barzilai). Research and development on therapeutics for human health. (See also Elixir Pharmaceuticals and Sirtris Pharmaceutical)

Aging can be redefined. We’re leading the way. Life Biosciences is developing innovative therapies to transform how we treat diseases by targeting aging biology.

  • Young Blood Institute (Mark Urdahl). Studies of new medical uses for well-established blood plasma replacement immunotherapies have recently indicated the previously undocumented potential to restore senescent immune systems and prevent many age-related diseases. 
  • Mediterranean Institute for Life Sciences (Miroslav Radman). Independently funded, international, non-profit research institute. Led by enthusiastic professionals, we strive to create and sustain a top-quality research environment for both international and local exceptional scientists.
  • Geron (Michael West). Research, experiment, adapt, and even defied conventions in pursuit of new possibilities for patients. Driven by the big idea behind telomerase inhibition – that you can kill cancer cells by targeting the enzyme that drives their uncontrolled growth.
  • Bakar Aging Research Institute (BARI). A scientific community that aims to translate breakthroughs in aging research.
  • Elveflow (Guilhem Velve Casquillas). Believe that microfluidics is the backbone of the ongoing biotech revolution. Aim at making it accessible to every scientific or engineering team. See also Elvesys.
  • Lyceum (Michael Rose). The laboratories at UC Irvine’s Department of Ecology and Evolutionary Biology are building new biology based on genomics, experimental evolution, and statistical learning. These are powerful tools for rebuilding biology, especially when used together.
  • Medical futurist. Medical Futurist Institute, the very first research institute specializing in digital health.
  • Lifespan Research Institute. Extend lifespan by discovering anti-aging compounds
  • Centre for Healthy Ageing (Andrea Maier, Brian Kennedy). The major focus of the Centre is to delay aging, prolong disease-free life as well as maintain high functionality and resilience.
  • The Conboy Laboratory (Irina and Michael Conboy). Engineering Longevity. Company rejuvenating plasmapheresis (blood plasma dilution).
  • Rejuvenate Biomed Research the biology of aging and identify opportunities to impact the aging process. Develop medicines that can positively influence molecular mechanisms that lead to age-related and degenerative diseases, also known as the hallmarks of aging.

NGOs

Many non for profit organizations as for the explicit goal of extending the healthy life expectancy of humans. In this list, we mention only those who progressed already or seem to be able to progress in the relatively near future. NGOs working mostly on advocacy are mentioned further in this document. 

    • LessDeath (Mark Hamalainen). Nonprofit with the mission to support the growth and effectiveness of the longevity industry’s workforce. Help aspiring longevity engineers start or advance their careers by providing education, career guidance, mentorship, experience, networking, and employment opportunities. Longevity Biotech Fellowship is a non-profit community for people to come together to build, join, or invest in revolutionary longevity biotechnology projects.
    • Longevity Research Institute (Joe Betts-Lacroix, Sarah Constantin, Jaan Tallinn). A health-span-expanding treatment for humans would prevent years of severe illness for billions of people. Plan to design, fund, and launch animal lifespan studies for the most promising longevity interventions.
    • BGRF (Biogerontology Research Foundation). Constituted as a charity in the UK to support the application of our knowledge of the mechanisms of aging to the relief of disability, suffering, and disease in old age
    • DataBETA Test-based DNA methylation for people testing anti-aging therapies.
    • Better Humans. World’s first specifically-transhumanist bio-medical research organization.
    • Wellcome : Good health makes life better. Want to improve health for everyone by helping great ideas to thrive. 
    • Church of Perpetual Life Mission is to assist all people in the radical extension of healthy human life and to provide fellowship for longevity enthusiasts through regular, holiday, and memorial services.

Advocacy and Information

Of course, most organizations inform and promote their own longevity goals and activities. Some groups are especially dedicated to informing scientists, stakeholders, and citizens.

  • Fight Aging (Reason). The source of information for longevity. The outgrowth of a similar initiative called the Longevity Meme that ran as a news service and online resource from 2001 to 2011. Fight Aging! continues in its stead.
  • Open longevity Community of rationally-minded people. We prefer life over death, especially young and healthy life. Against aging and support using a scientific approach to fight it.
  • Heales (Sven Bulterijs, Didier Coeurnelle). Inform and raise awareness about technological and medical developments in the field of biogerontology. Promote and support anti-aging research. Open up debates, question decision-makers, and propose a reassuring ethical framework.
  • Lifespan.io. Advocates for the development of medical technologies to rejuvenate aged tissues and organs. By directly targeting the aging processes, many age-related diseases might be prevented, delayed, or treated at once. By sponsoring, democratizing, and funding aging research, combined with responsible journalism, aim to accelerate progress toward this important goal for all humankind.
  • Longevity Technology. Well-developed website of information and the latest news in the field of longevity. 
  • Alliance for Longevity Initiatives (Dylan Livingston) (USA). Aims to bring together politicians from across the aisle to promote policy changes.
  • International Longevity Alliance (Daria Khaltourina). Help create a world where every person will be able to achieve aging amelioration and healthy longevity through innovative medical technologies. Promote the advancement of healthy longevity for all people through scientific research of ageing biology, and the development of new drugs and therapies.
  • Life Extension. Finding new ways to empower you to live a healthier, richer life— from innovative formulas to finding responsibly sustainable partners to supply our ingredients.
  • CureDAO. Community-Owned Platform for the Precision Health of the Future 
  • Longecity. The main hub is a forum that invites discussions of diverse topics: science, nutrition, lifestyle, and philosophy. Its features include messaging, subscriptions, ratings, keyword tags, and annotations.
  • The immortalist (Dinorah Delfin)  Publishing high-quality news articles, academic essays, & interviews featuring the movers & shakers of the Immortalists Revolution.
  • Longevity History (Ilia Stambler). History of fighting aging.
  • Longevity wiki. Offer the latest scientific findings on longevity. Be an accessible, objective, and unbiased source of information.
  • IDL International database on longevity. Collates information on deaths at age 105+ from countries with the reliable civil registry or equivalent systems.
  • Gerontology Research Group. A list of all the supercentenarians in the world. 

Biohacking

A few people are experimenting on themselves with longevity therapies and communicating the results

  • Rejuvenation Olympics (Bryan Johnson, Oliver Zolman). Public forum to share protocols and validated results for age rejuvenation. See also the Blueprint Project
  • Conquer Aging Or Die Trying! (Michael Lustgarten). Videos that are related to optimal health, fitness, aging, lifespan, and, Ph.D. data-driven attempts to biohack all of it. 

Funding and Prizes

Longevity research is expensive. To accelerate it, the most current way is funding. But the promotion is also organized by a « friendly » competition, by organizing prizes for longevity research.

  • Hevolution Foundation. Every human has the right to live a longer, healthier life. The organization announced one year ago that it was going to finance projects with one billion dollars a year.
  • VitaDAO. Decentralized collective funding for early-stage longevity research. 
  • Kizoo (Michael Greve). Provide mentoring, seed, and follow-on financing with a focus on rejuvenation biotech.
  • Life Extension Advocacy Foundation (LEAF) (Steve Hill). Promote the advancement of biomedical technologies which will increase a healthy human lifespan. By sponsoring and democratizing research efforts through crowdfunding and engaging the public. See also the Longevity Investor Network,
  • Longevity Xprize Community (Sergey Young). Study the future of longevity to discover innovative and accessible ways to radically extend everyone’s healthy lifespan. See also moralityofimmortality.com: moral aspects of reversing aging
  • Longevity Vision Fund (Sergey Young). Venture capital fund that invests in technologies with the potential to disrupt life sciences and healthcare to help people live longer and healthier lives. The fund’s mission is to accelerate longevity breakthroughs and to make them more accessible and affordable to everyone.
  • Juvenescence (Jim Mellon). A team of scientists, and pharmaceutical and nutritional product developers have a window into the world of disrupting the aging market that no one could ever have imagined. Using cutting-edge technologies and leveraging the latest advances allow us to make bold scientific discoveries.
  • Palo Alto Longevity Prize (Joon Yun). A life science competition dedicated to ending aging.  It is one of a growing number of initiatives around the world pursuing this goal
  • Longevity Prize: a collaboration between VitaDAO, Foresight Institute, and the Methuselah Foundation. Aim to generate an avalanche of proposals, experiments, and collaborations on undervalued areas 

Cryonics

If longevity research is not going fast enough, there is maybe a plan B

  • TomorrowBiostasis (Switzerland – Germany). Founded by doctors, engineers, and entrepreneurs to further science and provide high-quality cryopreservation.
  • Cryonics Institute (USA) is an American nonprofit foundation that provides cryonics services. CI freezes deceased humans and pets in liquid nitrogen with the hope of restoring them with technology in the future.
  • Alcor (USA) is the world leader in cryonics, cryonics research, and cryonics technology. Alcor is a non-profit organization located in Scottsdale, Arizona, founded in 1972, to help bring cryonics to the world. 
  • Kriorus (Russia) was established as a Russian Transhumanism Movement project by 8 founders. 

Products and Therapeutics

These organizations affirm that they have products that are already making longer and healthier lives possible. 

  • DoNotAge. Longevity partner. Provide quality health products.
  • Elysium Health: Translate critical scientific advancements in aging research into accessible health products and technologies. 
  • One Skin.(Carolina Reis Oliveira). Pioneering technologies aimed at extending human health span.
  • Novoslab (Kris Verburgh) Novo leverages science and data to create the best nutraceuticals to extend the human lifespan.
  • Ageless Partners worldwide health services company that helps clients to decipher the key mechanisms and root causes of aging through various product offerings 
  • Cambrian (James Peyer). Biopharma developing new therapies to extend healthy lifespans, bringing proven expertise to teams worldwide.
  • AgeX Therapeutics, Development of novel therapeutics targeting some of the largest market opportunities associated with an aging population.
  • Age Reversal Network.Human Age Reversal Project.
  • BioAge Labs (Kristen Fortney). Mapping human aging to develop a pipeline of therapies that treat disease and extend a healthy lifespan.
  • Longeveron Biological solutions for aging-associated diseases through the testing of allogeneic human Mesenchymal Stem Cells (MSCs)
  • Human Longevity Incorporated (Craig Venter, Peter Diamandis) helps to live a healthier, longer life. They designed a leading-edge precision healthcare program using today’s best technology to detect and help preempt cancer, cardiac, metabolic, and neurodegenerative disease, and more.
  • Celularity. Lead the next evolution in cellular medicine by delivering off-the-shelf allogeneic cellular therapies.
  • Leucadia Therapeutics. Fight against Alzheimer’s disease. 
  • resTORbio  Clinical-stage biopharmaceutical company novel therapeutics for the treatment of aging-related diseases.(rapamycin).

Organizations mainly in another language than Eglish 

Most organizations work mostly for the biggest part in English. Here are a few exceptions

  • Open longevity (in both Russian and English) working on all projects related to longevity and extending lifespan. Open to collaborations and sharing data publicly. 
  • Longlonglife (in both French and English) working in close cooperation with the greatest research laboratories on themes that will push forward the research on aging.
  • AMIIF/ (in Spanish) The Mexican Association of Pharmaceutical Research Industries, Represents more than forty Mexican companies -with national and international capital with a local and global presence- leaders in developing pharmaceutical research and biotechnology.
  • Partei für schulmedizinische Verjüngungsforschung (in German) (Felix Werth). Single-issue party. With future medicine, through rejuvenation, people are likely to stop dying of old age diseases. To achieve this, much more government money should be invested in building and operating additional research facilities and in training more people.

And to go further, other lists:

Below, you will find some other lists of organizations.

Conclusion

Compared to 10 years ago, the field of longevity organizations is much larger and bigger. Competition, diversification, and emulation can be good for the progress of research.

However, it is important to favor transparency for a real sharing of knowledge. This newsletter is a small contribution to this necessity for the common good of healthy longevity. 


Bad News of the Month: Life expectancy in the European Union falls for the second year in a row.

Good News of the Month: Sam Altman (from Open.AI invested $180 million into a company trying to delay death.


Life expectancy in the European Union further decreases, following a larger drop from 2019 to 2020. Compared with 2020, life expectancy for both women and men decreased by 0.3 years. Life expectancy is in 2021 82.9 years and 77,2 years for men. At the country level, the highest life expectancy at birth was recorded in Spain (83.3 years), Sweden (83.1 years), Luxembourg, and Italy (both 82.7 years), while the lowest was in Bulgaria (71.4 years), Romania (72.8 years) and Latvia (73.1 years).

The startup called Retro Biosciences eased out of stealth mode in mid-2022, it announced it had secured $180 million to bankroll an audacious mission: to add 10 years to the average human life span. MIT Technology Review reveals that the entire sum was put up by Sam Altman, the 37-year-old startup guru and investor who is CEO of OpenAI. Altman spends nearly all his time at OpenAI, an artificial intelligence company whose chatbots and electronic art programs have been convulsing the tech sphere with their human-like capabilities.


For more information

Heales monthly newsletter. The death of death N°167. February 2023. Neurodegenerative Diseases and Aging

« I predict one day it will be normal to go to a doctor and get a prescription for a medicine that will take you back a decade ». Sinclair said at a California event.

“There is no reason we couldn’t live 200 years.” David Sinclair, who runs an aging-research lab at Harvard University, says the new therapies could allow people to live much longer than they currently do. 


This month’s theme: Neurodegenerative Diseases and Aging


Introduction

Among all diseases related to old age, Alzheimer’s disease is probably the most studied. Sadly, it is still also an incurable, very frequent disease.

Would all of us die of degenerative diseases if we were able to suppress all other causes of death related to aging? Probably, and this is not the funniest way to age and die (if there is one). And until now, all promising therapies have been globally unsuccessful even if they were promising discoveries to understand these diseases and even slow down the diseases on animal models.

We need more work, more clinical trials, and more imagination to progress in this domain.

Aging as a risk factor for neurodegenerative disease

The primary risk factor for most neurodegenerative diseases is aging, including Alzheimer’s disease (AD) and Parkinson’s disease (PD). Most individuals with AD are aged ≥65 years and its prevalence continues to increase with increasing age. Tissues composed primarily of postmitotic cells, such as the brain, are especially sensitive to the effects of aging. The disease progresses irreversibly and is associated with high socioeconomic and personal costs. The nine biological hallmarks of aging are genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, mitochondrial dysfunction, cellular senescence, deregulated nutrient sensing, stem cell exhaustion, and altered intercellular communication.
Aging is the main risk factor for most neurodegenerative diseases, including Alzheimer’s disease and Parkinson’s disease.

This Cognitive Trajectories and Resilience in Centenarians study was done on  340 self-reported cognitively intact centenarians. Forty-four of these participants went on to neuropathological study and testing was performed with a range for the sample of 0 to 4 years.

There are some important findings from this work. During 1.6 years of follow-up, no decline in cognitive function was observed except for a minor decrement in memory. This suggests that, among this sample of centenarians, the incidence of dementia was low and implies resilience or resistance to AD and related dementias, despite the facts that they have the most potent risk factor in the general population, extreme old age, and that brain amyloid-β and tau deposition generally increase with age.

Various studies support the hypothesis that centenarians benefit from protective mechanisms rather than enjoying a relative absence of neurodegenerative causative factors.

Alzheimer plaques and tau proteins …

Alzheimer’s disease disrupts transmit information via electrical and chemical signals. among neurons, resulting in loss of function. Damage is widespread, as many neurons stop functioning, lose connections with other neurons, and die. Alzheimer’s disrupts processes vital to neurons and their networks, including communication, metabolism, and repair. The beta-amyloid protein involved comes in several different molecular forms that collect between neurons. Proteins clump together to form plaques.

Neurofibrillary tangles are abnormal accumulations of a protein called tau that collects inside neurons. In healthy neurons, tau normally binds to and stabilizes microtubules. In Alzheimer’s disease, however, abnormal chemical changes cause tau to detach from microtubules and stick to other tau molecules, forming threads that eventually join to form tangles inside neurons. It appears that abnormal tau accumulates in specific brain regions involved in memory. Beta-amyloid clumps into plaques between neurons. As the level of beta-amyloid reaches a tipping point, there is a rapid spread of tau throughout the brain.

Tests on mice are promising but never confirmed

One difficulty is the clear inability of current animal models to represent the full range of events identified in human disease, for instance, neuronal loss. It should be noted that a recent report using a Drosophila model suggests that neuronal loss may be protective in AD. This opens the door to a novel hypothesis that if proven would be quite atypical as in other neurodegenerative conditions, e.g. Parkinson’s and Huntington’s diseases, where neuronal loss is the main neuropathological feature.

A new mouse model developed by RIKEN researchers could improve the situation that many compounds that showed promise in mice models of the disease subsequently flopped in clinical trials on people. Because they so rapidly developed the signature brain abnormalities associated with Alzheimer’s disease, the mice should allow researchers to efficiently screen disease-modifying therapeutic candidates.

Do women have more often the disease?

Women living longer than men are probably not the whole answer as to why women are more likely than men to develop the disease. Your chances of developing Alzheimer’s disease late in life are somewhat greater if you are a woman than a man. One study followed 16,926 people in Sweden and found that beginning around age 80, women were more likely to be diagnosed than men of the same age. And a meta-analysis examining the incidence of the disease in Europe found that approximately 13 women out of 1,000 developed Alzheimer’s every year, compared to only 7 men.

A possible reason:

  • The amyloid plaques that cause Alzheimer’s disease may be part of the brain’s immune system to fight against infections.
  • Women have stronger immune systems than men.
  • As part of their stronger immune systems, women may end up having more amyloid plaques than men.

Notably, mitochondria from young women are protected against amyloid-beta toxicity, generate less reactive oxygen species, and release fewer apoptogenic signals than those from men. However, all this advantage is lost in mitochondria from old females. Since estrogenic compounds protect against mitochondrial toxicity of amyloid-beta, estrogenic action, suggests a possible treatment or prevention strategy for AD

Possible therapies

Transplanted stem cells have shown their inherent advantages in improving cognitive impairment and memory dysfunction, although certain weaknesses or limitations need to be overcome. 

The transplanted neural stem cells compensate for the loss of neurons and have a direct effect on the recipient tissue. Moreover, these cells can produce paracrine cytokines to exert an indirect effect on neurogenesis. The function of transplanted cells can be enhanced through preconditioning. For instance, the transplantation of transplanted neural stem cells that express growth factors promotes neurogenesis and improves cognitive impairment can ameliorate spatial memory and slow learning deficits. However, the transplanted cells can also transdifferentiate into non‐neuronal glia, which is an adverse event. 

Organoids

Human neurodegenerative diseases, such as Alzheimer’s disease are not easily modeled in vitro due to the inaccessibility of brain tissue and the level of complexity required by existing cell culture systems. Three-dimensional brain organoid systems generated from human pluripotent stem cells have demonstrated considerable potential in recapitulating key features of AD pathophysiology, such as amyloid plaque- and neurofibrillary tangle-like structures. However, they fail to model complex cell-cell interactions of different regions of the human brain and aspects of natural processes such as cell differentiation and aging. 

First-in-Human Clinical Trial to Assess Gene Therapy for Alzheimer’s Disease

Researchers at the University of California San Diego School of Medicine have launched a first-in-human Phase I clinical trial to assess the safety and efficacy of a gene therapy to deliver a key protein into the brains of persons with Alzheimer’s disease or Mild Cognitive Impairment, a condition that often precedes full-blown dementia.

The protein, called the neurotrophic factor is part of a family of growth factors found in the brain and central nervous system that support the survival of existing neurons and promote the growth and differentiation of new neurons and synapses. This is particularly important in brain regions susceptible to degeneration in AD.

Deep brain stimulation for Parkinson’s

For people with Parkinson’s disease who do not respond well to medications, the doctor may recommend deep brain stimulation. During a surgical procedure, a doctor implants electrodes into part of the brain and connects them to a small electrical device implanted in the chest. The device and electrodes painlessly stimulate specific areas in the brain that control movement in a way that may help stop many of the movement-related symptoms of Parkinson’s, such as tremors, slowness of movement, and rigidity. This works, unfortunately only for a certain time.

Conclusion
We know more about neurodegenerative diseases and especially Alzheimer’s Disease than about other diseases that we can cure. However, we still ignore and must find answers to fundamental questions:

  • What is really starting the disease?
  • What is precisely accelerating the disease? 
  • Are the accumulation of tau proteins and amyloid proteins the cause or the consequence of the diseases (the answer is probably « both », but to what extent?)?
  • And of course, what are the working therapies to stop or at least slow down the disease

Good News of the month: Longest living (Sprague-Dawley strain) rat called Sima is 47 months old and is still alive.


Therapeutic that mimics young plasma could signpost the way to longevity wrote the Longevity Technology. The last oldest rat before this experiment died at 45.5 months and was under calorie deficit intervention, the one in the current experiment has therefore already lived longer. The Guardian quotes the well-known scientist, Prof Steve Horvath: “I think the results are stunning, Some people will criticize the results due to the low sample size. One swallow does not make a summer. But I believe the results because several complementary studies support them.” 

Heales sponsored the experiment by Harold Katcher and the startup Yuvan, where the product E5 is purified from younger animals and given to 24-month-old female rats for rejuvenation purposes. 


For more information

Heales monthly newsletter. The death of death N°166. January 2023. Anti-aging interventions on Mice, ITP, and LEV Foundation

Healthy longevity research is crucial for ensuring that as we live longer, we are to live better. By understanding the complex processes of aging and disease, we can develop strategies to promote healthy aging, allowing individuals to live longer lives in good health. This not only improves the quality of life for individuals but also helps to reduce the burden on healthcare systems and maintains economic and social stability. Investing in healthy longevity research is an investment in our collective future

Created by ChatGPT


This month’s theme:  Anti-aging interventions on Mice, ITP, and LEV Foundation


Remark: This month’s newsletter is more on the technical side so please feel free to contact us for further clarification wherever needed.

 

Aging is a complex and multifactorial process. There are countless theories about why and how aging occurs and many claims to be able to stop the aging process and thus increase lifespan.

Laboratory mice are preferred for research on aging is their short life span, which allows for faster results. Various experiments carried out on mice, as well as numerous genetic interventions, have yielded significant results and have led to a better understanding of the fundamental processes of aging.

Multiple rules and regulations must be followed to ensure that ethics are maintained while using a model organism for experimental purposes. The EU has a set of strict rules and suggestions which must be followed, these are the three Rs– Replacement, Reduction, and Refinement-

Concerning the efficiency of tests, ideally, researchers should follow four main rules:

  • Registration of the interventions before starting. This is useful to give ideas to other researchers and to be complete in the description of the goal of the experiment in tempore non suspecto (before other people comment or contest the results).
  • Publication of the results, even if unsuccessful. The publication of unsuccessful trials is very useful to « close doors » and give ideas to other researchers as well. 
  • Use old mice and keep them alive until they die to be able to measure the real-life extension effect
  • Make experiments with a control group of mice and ideally in a « blinded » environment.

A list of the main ongoing and upcoming interventions are:

Details of each can be found in the Scientific Fact Sheet: Importance of mice and rats in longevity research.

The Interventions Testing Program (ITP)

The Interventions Testing Program (ITP) started in 2012 under the Division of Aging Biology. The main goal is testing potential agents that may delay aging as measured by lifespan extension and/or delayed onset/severity of late-life pathologies.  The three testing sites Jackson Laboratory, the University of Michigan, and the University of Texas Health Science Center at San Antonio work closely together with the National Institute on Aging (NIA) to design and execute standard operating procedures (SOPs) that provide consistent experimental protocol adhered to across the program. It is interesting to note that scientists at ITP have mentioned that the data and results collected from all three laboratories often show “significant” differences even when all the parameters are set exactly the same for reasons they do not understand.

Each site also brings specialized expertise to the project, including statistical analysis, pharmacology, toxicology, and optimal diet compounding. The UM-HET3 mice are genetically heterogeneous, the equivalent of a large sibship. Each mouse is observed until its natural death or until it becomes so severely ill that survival for more than an additional week seems very unlikely. The study design includes sufficient numbers of mice to provide 80% power to detect a 10% increase in average lifespan in either sex. 

They have so far identified nine agents that significantly increase median lifespan — acarbose (Harrison 2014, Strong 2016, Harrison 2019), aspirin (Strong 2008), canagliflozin (Miller 2020), captopril (Strong, 2022), glycine (Miller 2019), nordihydroguaiaretic acid (NDGA) (Strong 2008, Strong 2016), Protandim® (Strong 2016), rapamycin (Harrison 2009, Miller 2011, Wilkinson 2012, Miller 2014) and 17α-estradiol (Harrison 2014, Strong 2016, Harrison 2021).

The ITP constantly publishes all the data, including data collected on agents that fail to increase lifespan or delay late-life illnesses, or interventions that have deleterious side effects.

Collaborative Interactions Program 

The collaborative Interactions Program (CIP) was established to provide samples from ITP studies to advance aging research through collaborations with other scientists in the United States and in other countries. These samples are available free of charge (except, in some cases, for shipping charges). Plasma and certain frozen tissues are available from mice sacrificed at 22 months of age in all treatment and control groups from Cohorts 2015 to the present.

Longevity Escape Velocity Foundation (LEV Foundation): Robust Mouse Rejuvenation Study

LEV Foundation is performing large mouse lifespan studies, with the administration of four interventions namely Rapamycin, Senolytic, mTERT, and HSCT. All of these have individually, shown promise in extending mean and maximum mouse lifespan and health span. Their main focus is to test interventions that have shown efficacy when begun only after the mice have reached half their typical life expectancy, and mostly on those that specifically repair some category of accumulating, eventually pathogenic, molecular, or cellular damage. 

The first study in this program is starting in January 2023. 

Goals and Motivations 

LEV Foundation’ultimate goal in this program is to achieve « Robust Mouse Rejuvenation ». The interventions will be applied to mice of a strain with a mean lifespan of at least 30 months and initiated at an age of at least 18 months. The goal is to increase both mean and maximum lifespan by at least 12 months. In each study in this program, the Foundation will examine the synergy of (typically at least four) interventions already known individually to (probably) extend mouse lifespan when started in mid-life. They will determine not only the ultimate readout of lifespan but also the interactions between the various interventions, as revealed by the differences between the treatment groups (receiving different subsets of the interventions) in respect of the trajectories with the age of cause of death, the decline in different functions, etc.

 Interventions

  1.  Rapamycin
  2.  Hematopoietic Stem Cell 
  3. Transplant Telomerase Expression
  4.  Senescent Cell Ablation 

Experiment Schedule:

The LEVF will sacrifice 12 mice out of each group of 50 (males or females, for each of the ten treatments) for analyses that require terminally invasive tissue samples. In contrast to most studies, it will schedule these based not on chronological age but on group-specific survival curves. The LEVF believes this will be more informative than the traditional approach since the underlying correlation between biological and chronological age is factored out.

The LEVF considers there is a major chance that the most efficient interventions will be multi-component. That is why there will be 10 groups of mice tested:

  1. Controls only
  2. Rapamycin only
  3. Senolytic only 
  4. mTERT only
  5. HSCT only
  6. All but Rapamycin 
  7. All but Senolytic 
  8. All but mTERT 
  9. All but HSCT 
  10. All interventions 

Other interventions in the future will concern

  1. Sapheresis or Plasma Dilution
  2. Next-Generation Senolytic 
  3. T-cell rejuvenation
  4. Environmental enrichment

A bright future for mice and humans?

Thanks to the tests organized by the LEVF and hopefully soon other organizations, we could know soon what is useful for the healthy longevity of old mice. And a bit later, for humans,


Good News of the Month: Half-life more for old mice gene therapy.

Bad News of the Month: Longevity treatments do not slow aging./  Mortality increasing in Europe and  China./ Currently, the oldest person in the world is only 115 years old.


Recent studies have demonstrated that partial reprogramming using the Yamanaka factors (or a subset; OCT4, SOX2, and KLF4; OSK) can reverse age-related changes in vitro and in vivo. They show that systemically delivered AAVs, encoding an inducible OSK system, in 124-week-old mice extend the median remaining lifespan by 109% over wild-type controls and enhance several health parameters.

In a new study, researchers have taken a close look at three treatment approaches that have been widely believed to slow the aging process. However, when tested in mice, these treatments proved largely ineffective in their supposed impact on aging. « There is no internal clock of aging that you can regulate with a simple switch — at least not in the form of the treatments studied here, » concludes Dr. Dan Ehninger of the DZNE, the initiator of the study.

The mortality in China in 2022 was the highest since 1976. The mortality in the European Union was higher in 2022 than before the Covid. 

The French sister André died on January 17 at the age of 118 years. Maria Branyas Morera, who now became the dean of humanity, is « only » 115 years old, the lowest age in the world since 2012.


For more information

Heales monthly newsletter. The death of death N°165. December 2022.2022: A review of Longevity News

 

Since last year’s RAADfest in October 2021, there have been more initiatives and advances in the fields of age delay and age reversal than in any other 12-month period of time that is what a lot of people don’t realize that are paying attention to the news the politics plague the war and they’re not focusing on what’s really important.

RAADfest 2022 Bill Faloon Age Reversal Research Progress


This month’s theme:  2022: A review of Longevity News


In 2022, we saw many new developments in different areas related to longevity. These ranged from new companies, and organizations dedicated to either providing funding or advocacy in longevity to the beginning of worldwide conferences. The research field also made noteworthy advancements and clinical trials have started which we hope will give promising results in the coming years. Sadly, the years 2020 and 2021 saw a decline in life expectancy due to covid-19 pandemic which had the worst effect on the older population but it is good to see some data suggesting that life expectancy will raise again in 2022.

This newsletter is too short to give even brief feedback on all important activities, but this is our subjective shortlist.

Research and important articles

Senolytics

Senolytics come under a class of drugs that clears out senescent cells (SC). Dasatinib (a tyrosine kinase inhibitor), Quercetin (a naturally occurring flavonoid), Fisetin, and Navitoclax were the first senolytic-drugs introduced in the market following a hypothesis-driven approach. A combination of Dasatinib and Quercetin was given to mice for over two years and the results showed fewer senescence-related biomarkers as well as a lower occurrence of disc degeneration. However, this result was seen in young and middle-aged mice, not the older ones. 

Proposal to new hallmarks of aging

Genomic instability, telomere attrition, epigenetic alterations, mitochondrial dysfunction, loss of proteostasis, deregulated nutrient-sensing, cellular senescence, stem cell exhaustion, and altered intercellular communication was the original nine hallmarks of ageing proposed by López-Otín and colleagues in 2013. In the nearly past 10 years, our in-depth exploration of ageing research has enabled us to formulate new hallmarks of ageing which are compromised autophagy, microbiome disturbance, altered mechanical properties, splicing dysregulation, and inflammation, among other emerging ones.

ICD 11

In the latest international classification of diseases, codes were introduced for a better understanding of the diseases and within that, XT9T code referred to  “age-related” and MG2A, defined as “Old Age” which was later replaced by “Ageing-related decline of intrinsic capacity” after receiving criticism.

Update on TRIIM-X Study

TRIIM trial started in 2015 and was completed in 2017. As the researchers still had many questions, they started an extension of the same train known as TRIIM-X. It’s being extended by including women, a broader age range with people up to the age of 80 and down to the age of 40.

Some things that are in TRIIM-X which was not noticed in  TRIIM have to do with blood lipids.

Metformin 

It has been considered a wonder drug for the past few years in terms of anti-aging drugs. However, recently, some articles have affirmed that previous studies on metformin had a bias in data collection and that in reality, the drug has almost mild to almost no effect on slowing the aging process. It will be crucial to see as soon as possible the first results from the TAME study to check the credibility of Metformin.

They were also articles and research concerning rapamycin, caloric restriction, and gene therapies against aging, ….

Companies / Organizations

LEV

Longevity Escape Velocity (LEV) Foundation, headed by Aubrey de Grey, was created in 2022 to proactively identify and address the most challenging obstacles on the path to the widespread availability of genuinely effective treatments to prevent and reverse human age-related disease.

Hevolution

Launched in 2021, Hevolution Foundation is a non-profit organization that provides grants and early-stage investments to incentivize independent research and entrepreneurship in the emerging field of healthspan science. Headquartered in Riyadh, with hubs planned in North America, Europe, and Asia.

Altos Labs

Altos is designed to integrate the best features of academia and industry. The focus is on a shared mission, the ability to foster deep collaborations, and the passion and commitment to turn science into medicine. The company works with world leaders in the field including Juan Carlos Izpisúa Belmonte, Steve Horvath, and Shinya Yamanaka,

Chan Zuckerberg Foundation

In December 2021, Chan Zuckerberg Initiative (CZI) co-founders and co-CEOs Dr. Priscilla Chan and Mark Zuckerberg announced a 10-year effort to develop the science and technologies to observe, measure, and analyze human biology in action. Over the next decade, CZI Science will focus on developing new research, institutes, and technologies that measure human biology in new ways to help deepen our understanding of human health and disease.

Vita DAO 

VitaDAO is a DAO collective for community-governed and decentralized drug development. Their core mission is the acceleration of research and development (R&D) in the longevity space and the extension of human life and healthspan. To achieve this, VitaDAO collectively funds and digitizes research in the form of IP-NFTs. Read the WhitepaperCommunity Report 2021.

Longevity Science Foundation

The Longevity Science Foundation is a non-profit membership organization advancing the field of human longevity by funding research and development of medical technologies to extend the healthy human lifespan.

Other companies are very active in the field: Calico Labs (Google), In Silico Medicine, and SENS.

Some conferences 

Longevity Summit Dublin in September

3-day uplifting conference recognizing and celebrating emerging research and developments across the Longevity Industry globally.

Eurosymposium on Healthy Aging in November (Organized by Heales and the International Longevity Alliance)

The Eurosymposium on Healthy Ageing (EHA) is a unique biennial meeting of scientists working on the biology of aging. Toward the end of the two-day conference, a Declaration for Radical Healthspan Extension was adopted.

Aging Research and Drug Discovery Meeting 28 August – 1 September (ARDD)  

10th Aging Research and Drug Discovery Meeting had a great program with global thought leaders sharing their latest discoveries and insights into aging and how we target the aging process ensuring everyone lives a healthier and longer life. 

The weekly Healthy Longevity Webinar Series throughout the year

The NUS Yong Loo Lin School of Medicine, together with Prof. Brian Kennedy and Prof. Andrea Maier hosts the Healthy Longevity webinar series. Every Thursday, they have researchers and CEOs. etc present talks related to aging.

Advocacy

Party for Biomedical  Rejuvenation Research (Partei für schulmedizinische Verjüngungsforschung) formerly known as Party for Health Research (Partei für Gesundheitsforschung)

The German Party for Biomedical  Rejuvenation Research is committed to the faster development of medicine with which people, through rejuvenation, are unlikely to die of old-age diseases or old age and can live thousands of years, physically and mentally healthy. The Party will have candidates for the Berlin elections on February 12, 2023.

Lifespan.io

The Lifespan Extension Advocacy Foundation (LEAF)  has many different operations to perform in its mission to support the development of life extension technologies. Among other things, they are making great videos and podcasts.

Healthspan Action Coalition (HAC)

Bernard Siegel launched the new nonprofit organization, Healthspan Action Coalition (HAC), initiating a global societal movement supporting healthy aging in the USA. Building upon a foundation of trusted and matured connections and networks, the movement will be deployed across a wide spectrum of collaborative efforts promoting favorable policy and funding for scientific research, innovations, and patient engagement.

The Alliance for Longevity Initiatives (A4LI)

This US organization was founded with the goal of creating social and political action around the issues of combating age-related chronic conditions and increasing our number of healthy, disease-free years.

Less Death

LessDeath is a 501(c)3 nonprofit with the mission to mobilize the world’s best talent to work on maximizing a healthy human lifespan. Their programs are designed to reach out to talented, passionate, mission-aligned scientists, engineers, investors, and operators of diverse backgrounds and help them get oriented, get involved, accelerate their impact, and work together to break bottlenecks to progress.

The Healthy Longevity Medicine Society (HLMS)

The Healthy Longevity Medicine Society (HLMS) was established in August 2022 to build a clinically credible framework and platform for longevity medicine that promotes the highest standards of interdisciplinary collaboration in the field. The HLMS is governed by a Council of elected members representing different geographical locations and sectors. The HLMS aims to educate, foster research and professional development, set recommendations and guidelines, and coordinate activities across the various domains of longevity medicine.

Things to look forward to in 2023

Longevity trials on mice were announced by Aubrey de Grey and the Longevity Escape Velocity Foundation. They should begin as soon as January 2023 with 1,000 mice 18-month-old who will follow 4 different therapies. We should have results before the end of 2023.

Many more grants from Hevolution and other organizations should be available for scientists to conduct research and clinical trials. 

Finally, all the other advances could be accelerated notably by the rapid progress of artificial intelligence if they are used for longevity research.


This month’s good news: An international commission will be convened to assess the challenges presented by global aging and demonstrate how these challenges can be translated into opportunities for societies globally. 


Global Roadmap for Healthy Longevity (on the site of the National Academy of Medicine) 

Specifically, the commission will:

Consider and put forward avenues for innovative and groundbreaking aging-related research and development across basic, clinical, pharmaceutical, social, and behavioral sciences, bioengineering, information technology, and assistive technologies, and recommend ways to expand research funding and incentivize research in aging. Special consideration will be given to elucidation of the cellular and biological mechanisms of aging and regeneration; advances in information technologies including the development of large databases, machine learning, and artificial intelligence tools that will inform approaches to therapeutic interventions but also enhance the quality of life; merging engineering technologies based on software and mechanical design; new business models for social innovation and social enterprises; and implications for investment in research and development, regulation, commercialization, and scalability, including issues pertaining to ethics and equality.


For more information

Clinical Trials For Healthy Longevity That Are In Progress Or Could Be Started Immediately

One of the main challenges of research for healthy human longevity is to organize reliable studies (double-blind…) and to publish the results (even if they are not positive).

This page gives a list of what the organization Heales considers the most important and promising clinical trials that have already been started or should be started as soon as possible. As the studies are in progress, it is important to keep ourselves updated on the latest news which included criticism from the scientific community.

This list is intended to be a starting point. You are more than welcome to comment or make other suggestions.

An article about trials on animals will be published later.

  1. TRIM study Thymus

The thymus is a primary lymphoid organ essential for the development of T cells. These T cells are majorly responsible for adaptive immunity or the first line of defense against bacteria, viruses, and also tumors in the body. As time passes, the thymus goes under programmed cell atrophy known as involution. All T cells are produced at a young age as the thymus is at its largest size in children. As people grow older, the thymus starts to shrink and involution especially hits the immune system of people between the ages of 65 and 75. Thymus Regeneration, Immunorestoration, and Insulin Mitigation Extension Trial (TRIIM-X) by scientists at Intervene Immune were originally run from 2015 to 2017 on participants from age 50-65 that are healthy men that received a combination of growth hormone DHEA and metformin with an objective of reversing thymic involution. The results were promising they show that the participants showed an increase of more than two years in the predicted human lifespan. This was seen throughout the various epigenetic clocks including the GrimAge clock that analyzes DNA methylation. As of today, they have started another trial with similar objectives and are currently looking for volunteers. FDA has not approved this therapy yet but TRIIM-X Trial was the first of its kind to show regression in multiple age-related biomarkers possible in humans.

2.  Metformin TAME Study 

First introduced in 1922, Metformin is a well-known drug given to patients with type 2 diabetes and is known to act by helping the body to reabsorb less sugar and hence balance the blood sugar levels. It both lowers glucose absorption after a meal, as well as increases the body’s sensitivity to insulin. It is a popular medicine as it is cheap in cost and has minimal side effects. Metformin has already shown signs of delaying aging The main aim of the TAME (Targeting age with Metformin) Trial is to study how metformin delays age-related diseases like CVD, neurological conditions, cancer, etc. Led by Dr. Nir Barzilai, the trial is set to be six years long with more than 3000 participants from the age 65 to 79. Their goal is that if the FDA declares ‘aging’ itself as a disease, then instead of targeting the different age-related conditions, they will target aging itself which will include all the conditions together.Along with the TAME trial, they also want to look for biomarkers of aging in TAME BIO by:

  • Store samples of the blood, urine, DNA, etc from all the participants to study further.
  • Use different approaches to study biomarkers that predict changes in function, multi-morbidity, and subsequent death.
  • Study the influence of Metformin on multiple age-related biomarkers on all participants using and create a report with the core data collected.

They are currently collecting funds to proceed with the trial as the TAME Trail team deeply believes that drug intervention for aging and related diseases will not only extend years of health but will also save trillions of dollars. 

3. Rapamycin

Also known as Sirolimus, Rapamycin is a macrolide compound used for preventing rejection after organ transplant, coating stents, and even as a treatment for lung and other types of cancer. It functions by targeting the mTOR which regulates the growth of our cells by binding to a subset in the catalytic cycle, blocking the function of the mTOR.

Rapamycin is currently the wonder drug with the most promising anti-aging effects.  The latest studies at the Max Planck Institute for Biology of Aging show that in young adult fruit flies, a 2-week administration of rapamycin can protect them against age-related conditions in the intestine and extend life. Then they administered rapamycin for 3 months in mice and saw similar results with beneficial intestine-related results by the time the mice were middle-aged. This short exposure to the drug is seen to be equally beneficial as lifelong administration with lesser to no side effects. Further studies will now try to answer if the geroprotective effect of rapamycin continues in humans if they start taking it later in life and what kind of dosing will be ideal.

4. Senolytics

Senolytics come under a class of drugs that clears out senescence cells (SC). Senescence is a phenomenon where the cells get arrested in the cell cycle if they sense danger stimuli. Accumulation of the SC increases with aging and can cause damage to the tissue and can be a cause of multiple diseases including various neurodegenerative diseases. 

Dasatinib (a tyrosine kinase inhibitor), Quercetin (a naturally occurring flavonoid), Fisetin, and Navitoclax were the first senolytic-drugs introduced in the market following a hypothesis-driven approach. A combination of Dasatinib and Quercetin was given to mice for over two years and the results showed fewer senescence-related biomarkers as well as a lower occurrence of disc degeneration. However, this result was seen in young and middle-aged mice, not the older ones. The challenge currently lies in the lack of biomarkers specific to senescent cells. Currently, SA-β-Gal is the only available biomarker. Poor drug specificity delivery system is another challenge that the researcher needs to work out. More than 20 different clinical trials are being held to improve the efficiency of senolytics and the results from these will form a promising future.

5. NAD+ Charles Brenner

Nicotinamide adenine dinucleotide (NAD) is a coenzyme for redox reactions and is responsible for transferring electrons during metabolic processes. According to the study of Dr. Chareles Brenner, Nicotinamide riboside (NR) goes into the cells and nucleoside kinase puts a phosphate on by which NR is turned into NMN (Nicotinamide mononucleotide). NMN then converts to NAD and finally to NADP

6. Plasma dilution 

It is a method where the blood from an individual is extracted and then a plasma fraction of that blood is replaced by saline and albumin and this new mix is reintroduced in the body. Plasma dilution, also known as neutral blood exchange, is said to have properties that can restart the body’s regenerative capacities. 

The latest clinical trial from the University of California shows that Therapeutic plasma exchange (TPE) has the potential to restore the younger system and reduce biological aging. This study had a very small group of participants (Only 8) but has promising results with the de-regulation of 10 novel biomarkers, a youthful shift to various age-related conditions showing apoptotic regulators, and a youthful profile of myeloid/lymphoid markers in circulating cells, which have reduced cellular senescence and lower DNA damage. Further studies with the biggest participant group will confirm these results to be favorable in reducing aging.

7. Telomere

According to the Hayflick limit, we know that human cells will replicate for only a limited time and this was confirmed when scientists discovered that telomers shortens after each replication. Telomere has the function of protecting the ends of the genome from degradation and maintaining its integrity of it. Telomerase is the enzyme that catalyzes the extension of the telomeric region and the shortening of this telomeric region is associated with signaling between somatic cells for senescence. 

Shortening of telomere with age is related to factors like apoptosis, and oncogenic transformation and even affects the life and health span. The TACTIC (Telomerase ACTivator to reverse Immunosenescence in Acute Coronary Syndrome) trial from the UK had the objective to check if TA-65MD, a telomerase activator can decrease reduce the shortening of telomerase and oxidative stress.90 Patients took 1 x capsule twice daily for 1 year which may be either the test drug TA65MD (8mg) or the place. Another Clinical Trial from France Telomeres and Arterial Aging (TELARTA). Their objective is to create a model that makes it possible to examine different elements of telomere length dynamics in different tissues: leukocytes, skeletal muscle, endothelial progenitor cells (EPCs), and skin or subcutaneous fat in patients with or without atherosclerosis. The results from these and many such trials will give us a better view of future treatments. 

8. Follistatin 

Activin binding protein, follistatin, is encoded by the FST gene in humans and it is an autocrine glycoprotein, seen in most tissues. It is an antagonist of myostatin involved in increasing strength and muscle mass. This is one of the reasons why follistatin supplements are popular amongst bodybuilders.  

Follistatin gene therapy is emerging and Bioviva CEO (in 2015) became the patient zero for the therapy of both telomerase (hTERT) and follistatin (FST). A study using Mouse mouse cytomegalovirus (MCMV) carrying exogenous FST has shown an increase of 32.5% in median lifespan. Another study targeting Sarcopenia (loss of muscle mass and strength over age) showed overexpression of follistatin delivered by Adeno-associated virus (AAV) in mice aged 24-27 months caused an increase in muscle weight as well as improvement in age-related degeneration at the neuromuscular junction in mice.

9. Alpha-Ketoglutarate (AKG)

AKG is a ketone derivative of glutaric acid which is known to be used by the growing cells and is involved in the healing of wounds and injury (especially muscle tissues). As AKG is an endogenous intermediary metabolite in the Krebs cycle whose levels naturally decline during aging, many supplements are currently available for the public. Rejuvant, is a  potential life-extending compound formulation with alpha-ketoglutarate and vitamins, which has been shown to have an average of 8-year reduction in biological aging, after an average of 7 months of use, in the TruAge DNA methylation test. 

10. Khloto

Klotho is a transmembrane protein that is involved in the regulation of oxidative stress, signaling growth factors, organ protection, and control over the sensitivity of organisms to insulin and shows involvement in the aging process. 

Current studies show that higher Klotho levels in an 85-year-old will have the same size of brain and the thinking ability to that as someone who is 10 years younger. Another study shows that a 20%-30% increase in the lifespan of animals was observed after the overexpression of Klotho. With a single injection, Klotho showed improved cognition by 2 years in terms of spatial and working memory. Klotho Therapeutics is one of the leading biotech firms which strongly believes in Klotho having anti-aging properties and developing a patent-pending Klotho protein that has great potential to redefine society’s experience with aging.

Heales Monthly Newsletter.The Death of Death. N°164. November 2022. Frequently Asked Questions about Healthy Longevity

Medical, scientific, and technological progress is stronger than ever. However, this has not been enough to improve Healthy Life Expectancy. In 2020 and 2021, we had the first decrease in life expectancy at the world level in the last 75 years. To overcome this loss in life expectancy, we need better scientific cooperation, increased research, and more government-level commitment to progress. Second Brussels Declaration for Radical Healthspan Extension:  After Covid times, rejuvenation times. 6th Eurosymposium on Healthy Ageing.  November 2022.  


Theme of the month: Frequently Asked Questions about Healthy Longevity


Since 2016, the Organisation « Partei für Gesundheitsforschung » presents candidates for the German elections. On their website, they present a long text with dozens of frequently asked questions on how to defeat aging. Below, you will read a selection of five of those questions (with slight adaptations).

Q. What is meant by « longevity escape velocity »?

The « first generation » therapies for humans will not be perfect. So they will repair some ageing damage very well, some less than that while others might not work at all. If we simply keep applying the same therapies – no matter how often or thoroughly – the less well or unrepaired damage will continue to accumulate. Ultimately, we will only experience age-related decline and death at an older age.

So, to keep ageing at bay permanently, it is not enough to repeat the therapies at regular intervals. We have to improve them and apply the improved version the next time. This is where the concept of « longevity escape velocity » (LEV for short) comes into play. The term refers to the rate at which we need to improve the thoroughness of repair over time in order to prevent the overall level of damage in the body from increasing further – in other words, to keep our biological age, defined as the amount of damage in our body, constant or to reduce it. If we achieve this rate, we would therefore increase the remaining life expectancy of people receiving the treatment faster than time passes during it (for example, by more than one year per year). A 52-year-old who has a life expectancy of 80 years (i.e. 28 years remaining) would therefore add more than one year of life during his or her 53rd year. His or her life expectancy would increase to more than 81 years, and the next year to more than 82. The expected (age-related) end of their life would thus move away from people faster than they approach it.

It is to be expected that once we reach LEV, (global catastrophes and similar scenarios excepted) we will never fall below this rate again because as therapies become more thorough, the amount of damage that needs to be repaired continues to decrease (after all, the complexity of ageing is finite, not infinite). As a result, the remaining damage takes more and more time to reach a critical level and the speed needed to improve therapies also decreases.

Comparison with jumping off a cliff: the remaining life expectancy of a human being is currently constantly decreasing due to ageing, just as the distance to the ground decreases in a fall due to gravity. If you jump with a jet engine on your back, the situation is comparable to regular « rejuvenation » spurts: At first, it is inactive – so you fall. If you activate the jet engine in time (i.e. if you are not too old when the first therapies are available – we won’t be able to save them with the first therapies because they will already have accumulated too much damage), it will give you lift, slow down the fall and eventually let you climb further and further.

Q. I won’t live to see that anyway, will I?

Encouraging progress is being made and therefore it is not unlikely that a large proportion of the population alive today will benefit from rejuvenation therapies – this is true even for those already at a relatively advanced age.

The objection that people have been trying in vain for millennia to find a fountain of youth or immortality is correct. But the same is true of flight, access to space, the ability to restore paralyzed limbs and freedom from smallpox, polio, and tuberculosis: All these things have been impossible for hundreds of thousands of years until the technology needed was available and used. Now they are already available for most of the human population and are being extended to the rest.

Suppose we do nothing today to accelerate rejuvenation research. In that case, we run the risk of spending our last days wondering if we could have saved ourselves and millions of other people years of unnecessary suffering if only we had decided to act sooner.

Even if these treatments may come too late for some of us, it is still our moral duty to enable our descendants to live without age-related diseases and suffering, and that can only be done if we get to work today.

Q. How close are we?

According to US inventor and futurist Ray Kurzweil, we will reach LEV (longevity escape velocity) in ten to twelve years (as of 2018).

Bioinformatician and theoretical biogerontologist Aubrey de Grey says that we have a 50% chance of reaching LEV around the year 2036. This would mean that people who are healthy enough at that time and subsequently regularly take advantage of the latest rejuvenation therapies will never die from age-related causes.

This is based, among other things, on de Grey’s estimate that we will realize RMR (robust mouse rejuvenation) with a 50% probability in three to five years. According to de Grey, this estimate is based on an assessment of the following factors:

  • how fast the individual sub-areas are progressing
  • how much research funding will be available in the future
  • how often we find out something surprising about ageing
  • how often we develop new technologies that make the work we need to do easier
  • how difficult it will be to combine therapies when they work individually
  • how much we need to rejuvenate people to give scientists time to rejuvenate them better and stay one step ahead of damage

Regardless of these estimates, rejuvenation is a rapidly growing field of research that, as you can read under the next question, has already seen some breakthroughs. The first components of a comprehensive anti-ageing therapy, such as senolytics, are already being tested in clinical trials. Others are on the verge. This should give us confidence that we are in for a revolution in biomedical research – and subsequently in human life – in the next few decades.

Q. Are there already successes?

Yes. The SENS Research Foundation, the leading research institution in the field of the SENS approach to rejuvenation, has a list on its homepage of all publications in scientific journals that originate either from its in-house laboratory or from research projects funded by the foundation.

This Wikipedia article is very helpful in tracing the history of the research field so far.

Here is a roadmap showing which stages of development the individual components of the targeted therapies are in. Not only the scientific but also the organizational, public, and political progress.

Q. What can I do today to age more slowly?

Although there is evidence that some molecules can delay or even reverse individual ageing processes, there is no currently available intervention that has been shown to slow ageing in humans. Leading candidates among currently available interventions include caloric restriction, rapamycin, SGLT-2 inhibitors (especially in men) and 17-alpha-oestradiol (again in men). Even if they work, however, their potential is much lower than that of the direct harm-reversal therapies of the SENS approach, and they cannot be replicated in a similar way.

Q. How can I accelerate progress in this area?

If you want to contribute to the faster development of more effective rejuvenation medicine, you can start in small ways: Creating broader public awareness of rejuvenation therapies by talking about them with friends, school or work colleagues or family members, donating books on the subject to libraries, doctors’ offices or hospitals, and donating money to organizations dedicated to fighting ageing (some of which can be done for free, for example through AmazonSmile).

Of course, if you are a billionaire, a scientist, or a student in fields potentially useful for rejuvenation, or if you have more time for activism, today may be the first day of the rest of your life as a professional longetivist. You could one day save many lives, including your own, your parents or your children’s.


The good news of the month: 1,000 mice will live as long as possible in good health and a promise of total commitment to longevity


Longevity trials on mice were announced by Aubrey de Grey and the Longevity Escape Velocity Foundation. They should begin as soon as January 2023 with 1,000 mice 18-month-old who will follow 4 different therapies. We should have results before the end of this year.

Alex Zhavoronkov expressed a beautiful Longevity Pledge : (…) In my opinion, there is no cause more urgent, more altruistic, more impactful, more important, and more ambitious than enabling humans to improve continuously. (…) Therefore, I would like to pledge everything I have now, and what I will get in the future, to only one cause — extending healthy productive longevity for all human beings. Instead of donating just a portion of my wealth and energy to this cause, I would like to do more. I pledge to spend 100% of my time and personal resources to accelerate research and clinical deployment of longevity technologies. (…)


For more information

HEALES MONTHLY LETTER. THE DEATH OF DEATH NO. 163. October 2022. Aging in the International Classification of Diseases (ICD)

I grew up in New Zealand and lived there until I was 12 years old. I remember one time my grandma came to visit us and I had never hung out with somebody older than the age of 60 before. When she came, I remember for the first time realizing that when I go and play with my brother, I could run around and roughhouse, but for my grandma, just getting up from a chair is really painful for her and that struck me as oh she has a disease like we should try to find a way to cure her so she can come and play with us” and then I remember asking my parents “what disease does grandma have” and they said, “she doesn’t have it, she’s just old” and I said “what disease is that”, They said “you do not understand it is a natural process” and as a kid, I thought that was stupid you know, why is it a natural process that we should all get this disease: Laura Deming, biological researcher, HT Summit 2017.


Theme of the month: Aging in the International Classification of Diseases (ICD)


What is a disease and what is the International classification of diseases?

A negative effect on the functioning of the body of an organism and its structure over a prolonged period of time is termed as a disease. Diseases come with a set of signs and symptoms and can either be caused externally (due to a pathogen) or internally (Immune system dysfunction). What is considered a disease changes with medical knowledge, but also with social and cultural evolutions. Historically, some poor areas considered obesity to be a sign of wealth, but in today’s world, we consider it to be a complex disease. In a similar context, homosexuality was also considered a “mental illness” but in 1973, the Diagnostic and Statistical Manual of Mental Disorders (DSM) removed “Ego-syntonic Homosexuality »

In 1893, the Bertillon Classification of Causes of Death was introduced to the congress of the International Statistical Institute in Chicago by the French physician Jacques Bertillon and then adopted by several other countries. This system was based on the principle of “distinguishing between general diseases and those localized to a particular organ or anatomical site”. The first edition was published in 1900 and until the sixth version, very few changes were made. In the 6th edition, which came out in 1949, the title was modified to reflect the changes: International Statistical Classification of Diseases, Injuries, and Causes of Death (ICD). From this point onwards, World Health Organization (WHO) started preparing and publishing the revised versions of the ICD every 10 to 15 years. 

Is aging a disease for the ICD?

The question to know if aging is a disease or not is a controversial one.

Aging is slowly killing all humans of the world (who are not dying of other causes). To know if it is a disease or not is a semantic question. What is sure is that is it the common cause of all age-related diseases and an aggravation factor of almost all illnesses.

ICD-10 (in 1990) already included code R54 for Age-related physical debility, R41.81 for Age-related cognitive decline, and F03 for Senile psychosis.

In the latest ICD-11, codes were introduced for a better understanding of the diseases and within that, XT9T code referred to  “age-related” and MG2A, defined as “Old Age” which was later replaced by “Ageing-related decline of intrinsic capacity” after receiving criticism.

In fact, a group of scientists from Latin America opposed the idea of including the broad term of “Old Age” as a disease fearing reinforcement of the widely prevalent ageistic beliefs in society. They argue that aging might lead to some chronic medical or mental health conditions but that other factors play a much greater role in the disease causation rather than age itself. According to them, Frailty is a much more homogeneous and better-defined clinical entity.

Ageism can indeed be a problem in many societies. Still, the immense majority of sufferings due to aging come from diseases and infirmities due to senescence that we cannot yet escape.

On the other hand, a large group of scientists argued that categorizing aging as a disease with a “non-garbage” set of codes will result in new approaches and business models for addressing aging as a treatable condition, which will lead to both economic and healthcare benefits for all. This will also make it easy for researchers to conduct clinical trials as many countries strictly follow the ICD list for approvals and once a disease is recognized in this classification, it is easier for scientists to get their research funded. 

Old Age might be an ageist term, but pathological processes of aging are a major risk factor. Work on developing new and improved therapies, with the purpose of slowing and reversing the damage done by aging is thus very important.

What is now recognized?

The following list of Aging-related codes which are included in ICD-11 was curated by Daria Khaltourina. XT9T is coded for age-related and it is in combination with codes for other diseases. This long list can be useful for researchers wanting to start clinical trials in one specific domain of aging.

  • 3C0Y/Z&XT9T- Ageing-related other specified/unspecified diseases of the blood or blood-forming organs
  • 4A20.Y/Z&XT9T- Ageing-related other specified/unspecified acquired immunodeficiencies (probably the most useful for clinical trials)
  • 9E1Y/Z&XT9T- Ageing-related other specified/unspecified diseases of the visual system
  • AC0Y/Z&XT9T- Ageing-related other specified/unspecified diseases of the ear or mastoid process
  • BA00&XT9T- Ageing-related essential hypertension
  • BA01&XT9T- Ageing-related hypertensive heart disease
  • BA02&XT9T- Ageing-related hypertensive renal disease
  • DE2Y/Z&XT9T- Ageing-related other specified/unspecified diseases of the digestive system
  • CB7Z&XT9T- Ageing-related diseases of the respiratory system, 
  • BA80&XT9T- Ageing-related coronary atherosclerosis 
  • GA31.1&XT9T- Ageing-related secondary female infertility
  • 8A00.2&XT9T- Ageing-related Parkinson-like syndrome/secondary parkinsonism 
  • 8A03.3&XT9T- Ageing-related acquired ataxia, unspecified 
  • FA01&XT9T- Ageing-related osteoarthritis of the knee 
  • 2F34&XT9T- Ageing-related benign neoplasm of male genital organs 
  • GB04.Z&XT9T- Ageing-related male infertility, unspecified.
  • EE40.31- Age-related skin fragility
  • EJ20- Photoaging of the skin
  • MB21.0- Age-associated cognitive decline
  • EE40.Y- Other specified atrophy or degeneration of dermal or subcutaneous connective tissue
  • 9B10.0- Age-related cataract
  • 9B75.0- Age-related macular degeneration
  • MG2A- Old age Ageing-related decline of intrinsic capacity

Conclusion

ICD is important as it provides a common framework for recording and monitoring diseases universally between different countries, regions, and hospitals. This makes it easy to share and analysis of this data globally. 

The WHO felt that “dialogue helped to find a way forward in this matter” and allocated a dedicated process for review of the term “old age” The review led to the retraction of the term “old age” as a category title and index listings from ICD-11, having been replaced by “aging-associated decline in intrinsic capacity”. Additionally, the use of the term “pathological” as an extension code (XT9T) to describe the normal process of “aging” has been replaced by the much more appropriate term, “biological”.

This inclusion was accomplished in large measure thanks to longevity advocacy, in particular, the years-long advocacy of the International Longevity Alliance and its core activists.

So, aging is now in the ICD and can be officially addressed as a medical condition. 


The good news of the month: Aubrey de Grey’s announces rejuvenation trials on mice


The famous biogerontologist Aubrey de Grey’s was interviewed by Phil Newman, Editor-in-Chief of Longevity.Technology. He announced his new foundation will start « rejuvenation trials » on mice.

Innovative combined interventions on 18-month-old mice should be launched. The goal is to double the remaining life span.

This is excellent news. If successful, this type of experimentation offers perfect proof of the effectiveness of longevity therapy in an animal model. 


For more information