Tag Archives: featured

Heales Monthly Newsletter. The death of death N°177. January 2024. Different lifespans of animals: Very long, very short, in the real world and the labs

Imagine a rather educated mouse wondering whether it’s theoretically possible to live longer than the average life expectancy of two and a half years? Of course, it’s possible, » she’d say, « just look at the human species (…), mammals like us who live thirty to forty times longer! (translation) Au-delà de nos limites biologiques: Les secrets de la longévité. 2011. Miroslav Radman.


This month’s theme. Different lifespans of animals: Very long, very short, in the real world and the labs


Most people consider a lifespan of 80 years as something logical and good. If our normal lifespan was 20 years or 300 years, we would probably regard it as logical and good as well. Philosophers and religions would explain convincingly why shorter or longer lives would be bad. 

A normal lifespan for animals with senescence can vary in extreme ways, from a few days to a few centuries. There are even some specific animals that never age and can live for thousands of years and others who die before they are born. Concerning our close cousins mammals, the variation goes from two to two hundredth years. In this newsletter, we will approach animals with the longest life, and with the shortest lives and animals we study in the laboratories to understand their longevity.

Biologically immortality

Biological immortality means no irreversible senescence. This implies, among other things, that fertility is not decreasing with age. It has been said of quite a few animals. However, systematic observation for centuries is impossible and in most cases of affirmation of biological immortality, no lifespan of centuries is proved.

It can be noted, concerning life outside of the animal reign, that some plants, especially some trees, but also posidonia, and unicellular living beings seem biologically immortal.

Turritopsis nutricula

Turritopsis nutricula, commonly known as the « immortal jellyfish, » has captivated the scientific community due to its extraordinary ability to reverse its aging process and potentially achieve biological immortality. This unique jellyfish species, found in oceans worldwide, starts its life as a polyp, an underwater life form attached to the seabed. As it grows, Turritopsis nutricula gradually transforms into a jellyfish. In times of difficulty, it can regress to the polyp stage before transforming back into a jellyfish, capable of repeating this cycle indefinitely. This organism can reverse its mature cells back into their earliest form, essentially restarting its life cycle. Of course, the concept of biological immortality is complex but the remarkable rejuvenation ability of Turritopsis nutricula offers fascinating insights into the possibilities of life extension in the animal kingdom.

They are other animals (and plants) who do not show senescence. However, most of those animals (and of course plants) do not have a brain. Glass sponges, some corals, and maybe tubeworms can reach thousands of years. Hydra’s, planaria also do not seem to age, at least for the individual reproducing asexually. Lobsters also do not age. But they also do not stop growing and they will die at one moment because they become too big to survive. Tardigrades seem not to age when in cryptobiosis. Rougheye rockfishs and naked mole rats (see below) are also sometimes mentioned as biologically immortal but with no animal older than 100 known.

Very long life

The main characteristics of animals living very long are big size, low metabolism, and few predators. But not all those characteristics are necessary for very long-living animals. In general, vertebrates flying or living underground (for example olms in caves) tend to live longer.

Greenland shark

The Greenland shark, scientifically known as Somniosus microcephalus, is renowned as the longest-living vertebrate globally, with estimated lifespans of up to 512 years. Inhabiting the Arctic and North Atlantic waters, they don’t reach sexual maturity until they’re over a century old. These sharks owe their exceptional longevity to factors such as a slow metabolism and their cold-water habitat. This extended lifespan presents a unique opportunity for scientists to delve into the biological mechanisms behind their remarkable longevity, offering valuable insights into aging and adaptation in extreme environments.

Whales

The only mammals living longer than humans are whales. It is somehow logical for one of the biggest animals in the world, with no predator when adult. They probably can live more than 2 centuries.

Tortoises and sphenodons 

The extreme longevity of some tortoises, especially coming from the Galapagos is well-known and logical for animals of a big size, with no predators before humans came and a low metabolism. The oldest living turtle is 192 years old.

Less well-known are the Tuatara’s (sphenodons) who can live and lay eggs after more than one century.

Grey parrots

Parrots, known for their exceptional cognitive abilities and unusually lengthy lifespans, until 83 years, may correlate with these traits, according to a study led by Max Planck researchers. The study examined 217 parrot species, including well-known ones like the scarlet macaw and sulfur-crested cockatoo, which exhibit remarkably long lifespans of up to 30 years, typically observed in larger bird species. The researchers proposed a potential explanation for this longevity: a significant correlation between large relative brain size and extended lifespan. 

Albatrosses

A Laysan albatross named Wisdom is the oldest known wild bird (more than 70 years).  It is also the bird to have laid an egg at the oldest age: 68.

Bats

In contrast to various aging theories, bats, despite their elevated metabolic rate, exhibit remarkable longevity, living approximately three times longer than other mammals of comparable size. The mystery surrounding how bats achieve this extended lifespan has garnered significant attention, often drawing parallels to immortal fantasy figures like Dracula from Bram Stoker’s novel. Numerous ecological and physiological characteristics, including diminished mortality risks, delayed sexual maturation, and the ability to hibernate, have been associated with the prolonged lifespan observed in bats. Despite these insights, there remains a scarcity of information regarding the specific molecular mechanisms that contribute to the exceptional longevity observed in bats.

Eusocial insects and larvae.

Queens (this means reproductive females) and sometimes kings (reproductive males) of eusocial insects like bees, ants, and termites can live a much longer life than most insects. The record is 8 years for bees, for ants almost 30 years, and for termites, it is roughly 30 to 50 years. What is particularly interesting for those animals is that so-called workers or soldiers have often the same genes, but live lives tenths of times shorter. It would be interesting to know if some mechanisms allowing a much longer life for some insects can somehow be duplicated by mammals.

Some insects have a very long life as a larva. The longest normal larva period concerns periodical cicadas living 17 years as a larva (and then massively becoming adults to limit predation). Splendour beetles can be larvae during an even longer period. The longest recorded period is 51 years.

Very short lives

We wrote that animals with a very long life have usually a big size, a low metabolism, and few predators. Unsurprisingly, animals with a very short life are usually small, with a fast metabolism, and with many predators.

Some of those animals (C Elegans, drosophila, Nothobranchius, mice, and rats are studied in the laboratory and will be approached in the third part of this newsletter.

Many insects are considered to have a very short life but have a longer life during their larva phases. The famous mayflies who live only days, even hours or minutes as an adult and many species of butterflies who do not eat when they are adults have a nymphal of several months to several years,

The strange (non-)life of some mites.

The strangest shortest known lifespan is the life of males Acarophenax tribolii. Their lifespan is less than nothing because they die before they are born!   The mother Acarophenax produces young in a ratio of 15 females to one male. The male copulates with all its sisters during gestation and dies when still in the womb of the mother. The mother later literally explodes and dies, releasing her young daughters already pregnant. And the cycle starts again, they will grow and give birth by exploding.

Gastrotrich 

It is a very small worm-like animal found in freshwater areas everywhere in the world. The whole lifecycle can happen in 2 days, but it can also be longer than 40 days.

Chameleons

The terrestrial vertebrate with the shortest life is the Labord’s chameleon. He normally lives less than 6 months. It is an interesting animal because other chameleons, genetically probably not very different, can live up to 10 years. However, it must be said that apparently in favorable situations, some animals live longer.

Mammals. The shrew and the male antechinus.

The mammal having the shortest life for males and females is the common shrew. This very small carnivore animal will normally not live longer than one year. It is less than rats and mice that are abundantly suited for longevity, but far less easy to breed.

The male antechinus is a small marsupial that lives less than one year, dying during or just after the period of reproduction. This is sometimes called « suicidal reproduction ».

Roundworms 

 and their mammalian counterparts suggests that the roundworm will continue to be a valuable animal model for the study of aging. 

Fruit flies 

The Turquoise killifish is an extremely interesting freshwater fish for the study of aging. It is easy and not expensive to breed. It is so easy and nice that people keep it as a pet. It has also the shortest life of all vertebrates but one (Eviota sigillata, a sort of Gobi). The Kill fish has remarkable capacities for regeneration but will live for a maximum of twelve weeks. Hundreds of scientists around the world are studying the animal to try to understand and solve the fascinating questions of senescence. They do not study as much Eviota sigillata who live an even shorter life of a maximum of 59 days, because breeding this small saltwater fish is far more complicated. Another fish that must used for scientific studies is the Zebrafish, because of its capacity for regeneration. This animal can live up to 5 years in an aquarium

Animals in the laboratories

From widely used model organisms like fruit flies (Drosophila melanogaster) and nematode worms (Caenorhabditis elegans) to more complex mammals such as mice and rats, researchers explore various species to understand the genetic, physiological, and environmental factors influencing lifespan. Additionally, unconventional subjects like bats and parrots have recently captured scientific interest due to their exceptional longevity despite high metabolic rates. These animals serve as valuable models to investigate the intricate mechanisms that contribute to prolonged lifespans, shedding light on potential insights applicable to the broader spectrum of life, including humans.

Roundworms 

Caenorhabditis elegans is a roundworm with a 20-day lifespan, making it a good subject for research. More than 400 genes that extend lifespan in roundworms have been described. Among the genetic controls studied are a series of interacting proteins that act like insulin and control reproduction and longevity. Investigators have also looked at a mechanism controlled by a group of genes called clock genes. These regulate metabolism in the roundworm and affect lifespan. The roundworm genes that seem. to confer increased longevity do so by supporting resistance to external stresses, such as bacterial infections, high temperatures, radiation, and oxidative damage. The correlation between the existence of roundworm genes and their mammalian counterparts suggests that the roundworm will continue to be a valuable animal model for the study of aging. 

Fruit flies 

Drosophila melanogaster, or the fruit fly, is a favorite subject for studies on longevity. Researchers have identified one gene that they have named Methuselah, which can increase fruit fly life span by 35 percent. Molecular physiologist Xin-Yun Huang of Cornell University’s Weill Medical College in New York City has been conducting research to uncover what activates the Methuselah protein. Huang and his team found that another protein, the Sun protein, binds to Methuselah and alters fly longevity. Flies with a disabled copy of the Sun gene lived 50 percent longer than control flies. A number of studies on a fruit fly gene called Indy (for “I’m Not Dead Yet”) have been published. Because the fruit fly has genes such as Indy that produce proteins very much like human proteins, it makes an excellent animal model for aging research.

Nothobranchius furzeri

The Turquoise killifish is an extremely interesting freshwater fish for the study of aging. It is easy and not expensive to breed. It is so easy and nice that people keep it as a pet. It has also the shortest life of all vertebrates but one (Eviota sigillata, a sort of Gobi). The Kill fish has remarkable capacities for regeneration but will live for a maximum of twelve weeks. Hundreds of scientists around the world are studying the animal to try to understand and solve the fascinating questions of senescence. They do not study as much Eviota sigillata who live an even shorter life of a maximum of 59 days, because breeding this small saltwater fish is far more complicated. Another fish that must used for scientific studies is the Zebrafish, because of its capacity for regeneration. This animal can live up to 5 years in an aquarium

Muridae

Mice and rats are the favorite subjects of scientists interested in human aging. Because they are mammals, they are more closely related to us than yeast, flies, or worms, and their relatively small size and short life span make them easier to study than long-lived animals. Much of the excitement in recent aging research has come from discoveries that aging can be postponed in mice or rats by very low-calorie diets and by discoveries of mutant genes that can extend life span by as much as 50 percent. Through targeted genetic manipulation, researchers have already created genetic lines of mice that model Werner’s syndrome (premature aging), Alzheimer’s disease, other neurodegenerative conditions, atherosclerosis, diabetes, immune dysfunction, musculoskeletal disorders, oxidative stress, and many other medical conditions associated with aging. Other studies are using mice engineered to make them particularly vulnerable to DNA damage or damage to their mitochondria (energy-producing “organs” inside cells). The growing interest in mouse aging and genetics has been strongly stimulated by the sequencing of the mouse and human genomes and by the realization that most human genetic diseases can be modeled by changes in equivalent genes in these rodents.

Naked Mole Rats 

Those rodents already studied in a recent newsletter are living exceptionally long lives for a small mammal. They live in underground colonies and are relatively easy to observe in captivity. Contrary to all other well-studied vertebrates, they seem to show no senescence in the sense that their probability of dying does not seem to progress with age. However, they show other signs of aging. 

Dogs

The distant children of wolves have lived with us for so long that they acquired good and bad habits. They are so culturally and physically close to us that they are ideal to compare with us. And since we have millions of them of old age, it will be extremely easy to start experiments on longevity with animals of old age. It could even be in combination with treatments with their well-informed owners.

Nonhuman Primates

The discovery that fruit flies and roundworms carry genes that affect their longevity is exciting, particularly because many of those genes have human counterparts. However, the fact remains that the complexity of human physiology can’t be replicated in simpler organisms such as fruit flies and roundworms. But our DNA is very similar to that of nonhuman primates such as monkeys and apes. And it is nearly identical to that of chimpanzees. The National Institute on Aging (NIA) is sponsoring an extensive series of experiments into aging and longevity using primate models, including rhesus and squirrel monkeys. Rhesus monkeys are particularly useful because the rate of aging in rhesus monkeys is three times as fast as the rate in humans. It is important to say, in ethical terms, that the goal and result of the experiments is to allow a longer and healthier life for primates and consequently for humans. Primate studies are ongoing in neurobiology, skeletal deterioration, reproductive aging, and other age-related diseases such as heart disease and diabetes. Results from studies of caloric restriction and its impact on aging in primates are also available.

The good news of the month: LEVF experiments are progressing

The Longevity Escape Velocity Foundation is pursuing an experiment on 1,000 mice. After about 10 months, the results are already very promising, especially concerning the female mice with a big difference in mortality between mice with no treatment and mice with all treatments.

A second study is in the preparation mode, subject to. The interventions would be:  Deuterated Fatty (Arachidonic) Acids, Mouse Serum Albumin, Mesenchymal Stem Cells, and Partial Cellular Reprogramming

It is to be hoped that the LEVF will soon not be anymore the only working longevist organization working on a large number of old mice observed until their death with a promising treatment. Organizations like Hevolution, Google Calico, the Chan Zuckerberg Foundation, and Altos Labs should use a few million dollars among their billions to test their most promising ideas on our mammalian short-living far cousins.


For more information

Heales Monthly Newsletter. The death of death N°175. November 2023. Is Ultra-processed food (UPF) causing accelerated aging?

The primary difference between this current, pre-survival world, and the post-mortality world will be that our actions, and our future, have MORE [explicitly not less] meaning. The reckless abandon with which we sometimes live moments of our life, often to the detriment of ourselves and others, will no longer be universally justifiable with the calling excuse of “Oh, well. going to die someday anyway, might as well enjoy the moment”. 

Jed Lye, Molecular physiologist, 2021 Medium.com.


This month’s theme: Is Ultra-processed food (UPF) causing accelerated aging?


Introduction

Ultra-processed foods typically contain five or more ingredients, often incorporating additives and components uncommon in home cooking, such as preservatives, emulsifiers, sweeteners, and artificial colors and flavors. These products generally boast extended shelf life. Examples of ultra-processed foods include ice cream, ham, sausages, crisps, commercially produced bread, breakfast cereals, biscuits, carbonated beverages, fruit-flavored yogurts, instant soups, and certain alcoholic drinks like whiskey, gin, and rum.

Researchers frequently employ the NOVA classification, a four-part scale, to categorize foods based on their level of industrial processing. The classifications include unprocessed or minimally processed foods (encompassing items like vegetables and eggs), processed culinary ingredients (typically added to dishes and seldom consumed on their own, such as oils, butter, and sugar), processed foods (formed by combining elements from the first two categories, as seen in homemade bread), and ultra-processed foods (created using industrially modified raw ingredients and additives).

Harmful Effects 

British Heart Foundation in 2023 conducted two studies observing the effects of ultra-processed food. In the initial study, which observed 10,000 Australian women over a span of 15 years, it was discovered that individuals with the highest intake of ultra-processed foods (UPF) in their diet faced a 39 percent higher likelihood of developing high blood pressure compared to those with the lowest consumption. The second study, a comprehensive analysis encompassing 10 studies with a participant pool exceeding 325,000 men and women, revealed that individuals with the highest consumption of ultra-processed foods had a 24 percent increased risk of experiencing severe heart and circulatory events, including heart attacks, strokes, and angina.

A study, featured in the November 2022 issue of the American Journal of Preventive Medicine, indicated that these UPF items probably played a role in approximately 10% of deaths among individuals aged 30 to 69 in Brazil in 2019. Additional research, such as a study published in Neurology in July 2022, which revealed that a 10% rise in ultra-processed food consumption heightens the risk of dementia, has connected this category of food to significant health repercussions.

Direct Effect on Aging 

Consuming ultra-processed foods has been linked to the shortening of DNA telomeres, a factor associated with increased vulnerability of skin cells to aging. An Experimental Dermatology study conducted on lab mice revealed that those with shortened telomeres were more prone to slow wound healing, skin ulcers, premature hair greying, and hair loss. Dr. Bes-Rastrollo has highlighted that common contributors to telomere atrophy include oxidative stress and inflammation, both of which are associated with dehydration—factors often found in ultra-processed foods. Oxidative stress can disrupt the balance between free radicals and antioxidants in the body, potentially compromising the immune system and accelerating the aging process, manifesting in the appearance of older skin.

Another study shows that higher consumption of UPF (>3 servings/d) was associated with a higher risk of having shorter telomeres in an elderly Spanish population of the SUN Project (886 participants (645 men and 241 women) aged 57-91 y). Those participants with the highest UPF consumption had almost twice the odds of having short telomeres compared with those with the lowest consumption 

The primary conclusion from the study published in Springer in 2023  reveals a consistent trend: there is a rising odds of disease ratio associated with increasing consumption of processed and ultra-processed foods (UPFs) across quintiles, whereas an inverse pattern is observed for unprocessed or minimally processed foods. To put it in practical terms, the likelihood of nutritional frailty increases by nearly 50% with moderate daily consumption of processed foods and doubles for high versus very low consumption. 

Similarly, there is an escalating probability linked to higher UPF consumption. Their study suggests that individuals with nutritional frailty phenotypes tend to have a greater inclination toward consuming processed foods and UPFs compared to their counterparts. While these food choices contribute to food security by ensuring immediate availability, especially beneficial in cases of disability, they fall short in terms of nutritional quality. 

These items, primarily convenience foods or beverages, are composed mainly or entirely using food-derived substances and additives, often lacking natural, unaltered foodstuffs. Consequently, they are characterized as components of unhealthy dietary patterns associated with adverse health outcomes, including overall mortality, cardiovascular disease, metabolic syndrome, physical and cognitive decline, cancer, and other health issues.

Conclusion

Medical research progresses spectacularly. We constantly explore new ways to cure diseases and make lives healthier en longer. However, the maximal life expectancy has not risen anymore for decades. The oldest person ever, Jeanne Calment died 26 years ago when she was 122 years. The oldest person in the world now is « only » 116 years old. 

We all know that one of the biggest sources of medical care is the drugs that we swallow. We know how much the combination of drugs can be influential good or bad. But we tend to forget that we swallow many other substances as air and food. 

One global cause counterbalancing health progress could be all sorts of pollution we ingest. Air pollution is everywhere in the world, but happily globally decreasing in many aspects even if fine particles are deeply worrying. Food, especially ultraprocessed food could be also a major source of the decline. Actually, it could be the source of various damages: through preservatives, sugar, saturated fats… And because of « toxic cocktails » created from unknown combinations of products.  There is an urgent need to learn more about these substances, because of the risks they present. Beware, however, that the risks may be overestimated out of fear of the ‘artificial’. What’s more, some rarer processed products may be beneficial without us yet having detected them.


The good news of the month: AI for longevity Research


The fast developments of Artificial Intelligence are everywhere in the news. In the last weeks, world leaders met to adopt the Bletchley Declaration. The recent discussions about AI are about the risks, but also the hopes for more resilience and health.

It is clear that using AI primarily for goals related to medical research, longevity progress, and more resilience… is one of the ways to mitigate the risks of AI. Companies and organizations are active in this direction. See for example the Longevity GPT website.

In Europe, the combination of high-level AI Health companies and high-level data from the European Health Data Space (EHDS) opens large perspectives. If European public Health Institutions get involved, breakthroughs for longevity for all (and not only for a few) could be around the corner.

For more information

Heales Monthly Newsletter. The death of death N°174. October 2023. Naked Mole Rats


Back in the 1900s, the pioneer immunologist Elie Metchnikoff, vice president of the Pasteur Institute in Paris, wrote, “Aging is a disease and it should be treated like any other.” His work helped to shape interest in aging as a manageable problem. (Source)


This month’s theme:  Naked Mole Rats


Introduction

Naked mole rats, often known as the « sand puppy” and scientifically known as Heterocephalus glaber (NMRs), hold the distinction of being the lengthiest-lived rodents in the animal kingdom, boasting an impressive maximum lifespan of 30 years. This longevity surpasses expectations based on their diminutive body size by a remarkable factor of five. These remarkably social, mouse-sized rodents are indigenous to the arid and semiarid regions of the Horn of Africa and parts of Kenya, particularly in Somali regions, where they naturally inhabit subterranean burrows. Due to their exceptional characteristics, they have become invaluable subjects for scientific investigations encompassing behavioral studies, neurological research, ecophysiological inquiries and especially geroscience!

Those strange looking (ugly) animals are also specific in other ways. As an adaptation to life in burrows, a stable underground environment that can be lacking respirable air, they are able to survive with less oxygen than other mammals. but they have difficulties changing their internal temperature. Naked mole rats together with the close  Damaraland mole-rat are considered the only mammals being « eusocial », living in groups with only a « queen mother ». 

Do they age ?

You can define aging in many ways. One of the ways of defining it is a degradation phenomenon, having for consequence that the probability to die augments with age.

For humans, this is called the Gompertz law, more precisely, the Gompertz–Makeham law of mortality. From age 30, the probability to die doubles each 8 years.  For many animals, there is a similar curve, but the rate of doubling is very different. For example, for mice, the probability to die doubles each 3 months.

We have reliable statistics for mortality of humans, rats, mice and some other mammals living with humans. But statistics are far less easy to establish for wild animals.

Concerning naked mole rats, a few colonies have been kept in captivity since decennia. The positive news is that there is no measurable growth of the rate of mortality. This was measured 5 years ago and again recently. Does this mean that those mammals are « biologically immortal »? We are far from sure at the moment.

First, the number of naked-mole rats proven to be still alive at an advanced age is until now low. The oldest animals are barely 30 years old and only one animal reached the age of 40. So, those statistics have to be confirmed.

It is true that a lifespan of forty years is almost 10 times longer than the maximal lifespan of rats and mice. However, this lifespan is not so much longer than the oldest long living rodents that are squirrels (23 years and 6 months). And there are even other small mammals who have a longer lifespan. A Brandt’s bat (Myotis brandtii) has been living in the wild for at least 41 years.

Also, it could be that the rate of mortality stops increasing until a certain age, but that the process of accumulation doesn’t stop, still inevitably leading to the death of old age after a « plateau ».The fact that the epigenetic age of naked-mole rats changes with age and the fact that very old individuals look older than younger ones are elements tending to confirm this hypothesis. Unfortunately for researchers hoping to find a recipe for longevity.

Transferring the genes of longevity

It is not sure that genetic differences between humans have a very big influence. What we found until know is only that many ((combination of)) genes have a moderate impact.

But it is certain that genetically close animals have very different maximal lifespans. So, the transfer of longevity genes is a possible solution.

This was recently tested on naked-mole rats to mice. The gene transferred improves the production of Hyaluronic acid, a substance with many positive aspects. The result of the first experiment is relatively good. Indeed « Increased hyaluronan by naked mole-rat Has2 improves healthspan in mice,” The lifespan extension is between 4,4 and 16 % (for male mices) according to different estimates.

Conclusion: 

Will we have in a not so far future changes as spectacular as the changes in lifespan obtained many years ago with genetic changes in C Elegans worms with doubling of lifespan? We do not know, and the longevity field is complicated. But we should certainly try, with help from naked-mole-rats and also with help of A.I. to better understand, examine, compare, curate data and have clinical trials on rats and on humans.

The good news of the month: Dublin Longevity Declaration.

You are invited to sign this declaration. An increase in healthy lifespans, through much better treatment of age-related diseases would deliver extraordinary benefits, including savings of literally trillions of dollars per year in healthcare costs.  

Dozens of world-leading experts, hundreds of scientists and thousands of « ordinary » citizens declare that such an advance is now potentially within reach, by targeting the underlying processes of aging, and that efforts to achieve it should be immediately and greatly expanded.

For more information

Heales Monthly Newsletter. The death of death N°173. September 2023. Recent Longevity Conferences


“First do no harm is a classical principle of medical ethics. Complement: Doing nothing is harming people.”

 The famous longevity scientist Brian Kennedy during the International Longevity Summit of Dublin, August 2023


This month’s theme: Recent Longevity Conferences


Introduction

During the past last weeks, many conferences have been organized concerning longevity. The Longevity+DeSci Summit in New York, August 10 and 11, the Longevity Summit in Dublin, August 17-20, the International Longevity Summit in Johannesburg August 23 and 24, the Aging Research & Drug Discovery meeting ARDD in Copenhagen, August 28 – September 1 and the Raadfest in California, September 5 – September 8.

Thousands of people assisted on the sites and online. Here, we will give short feedback about each conference and then general comments about what was discussed during the conferences.

One goal: longevity for all, many points of view

Hosts and sponsors are increasingly diverse in the longevity field. The increasing diversity of people within the field of longevity is useful and is also more gender equilibrated than in the past, especially among young scientists. Some offer grants and funds, others search for it. Some sell something, and most want to share their knowledge.

The longevity+Desci Summit NYC was organized by Lifespan.io, the biggest « activist » organization for longevity. One of the key aspects was the promotion of a decentralized way of medical research (Desci for « Decentralized science »). The goal of decentralized science (DeSci) is « to increase scientific funding, free knowledge from silos, and cut out profit-motivated intermediaries, such as publisher conglomerates that lock scientific data behind paywalls. »

The Longevity Summit in Dublin is the biggest conference of the Longevity Escape Velocity Foundation, the organization recently created by Aubrey de Grey. During 4 days, scientists, but also specialists of aging, representatives of longevity companies and organizations promoting medical progress met.

The International Longevity Summit in Johannesburg was a big conference, the first of its kind in the youngest continent. It was organized by Afro-Longevity and the Transdisciplinary Agora For Future Discussions (TAFFD).

The Aging Research & Drug Discovery meeting (ARDD) was organized in Copenhagen by a great scientist and host Scheibye-Knudsen. The conference lasted for 5 days, each day with speeches the whole day and even the evening. It is the best imaginable place for the confrontation of new ideas, discoveries, and hypotheses concerning the mysteries of aging.

The RAAD festival aims for a « Revolution Against Aging and Death. It is a place where scientists come, but also less « serious » people and where there is the biggest will and enthusiasm for radical longevity.

Main themes approached during the conferences

Biomarkers 

There were many significant discussions about « biomarkers of age. » They are molecular or physiological indicators used to assess an individual’s aging process. They provide valuable insights into a person’s overall health status and can be used to study the effects of aging on various aspects of biology, health, and longevity. During these conferences, numerous researchers presented their biomarkers, including glycan biomarkers, the nuclear envelope, and microbiota. These can be used to determine your biological age and are to find ways to slow it down. In the longevity field, there is a growing discourse surrounding all biomarkers and there has arguably been a certain trendiness surrounding them, possibly due to their commercial appeal to the public. 

Foods that promote a healthier, longer life 

Some talks revealed the potential of a healthy alimentation to promote a healthier and longer life. Natural senolytics foods have shown potential in reducing senescent cells, contributing to better aging. These include soy proteins, blueberries, resveratrol-rich grapes, omega-3-rich fish, apples, and broccoli. Moreover, passion fruit and krill oil were studied for their impact on preventing Alzheimer’s disease. These specific foods could provide protective properties that may help safeguard cognitive health and promote overall well-being as you age.

Physical activity 

Regular physical activity has been shown to have a significant positive impact on longevity. Studies on mice have revealed that exercising three times a week can increase their lifespan by restoring cyclin D1 function (an important regulator of cell cycle progression). The study suggests that inducing cyclin D1 may replicate the beneficial effects of exercise. Furthermore, genes like ACTN3 and R577X, commonly found in more athletic individuals, may play a role in promoting longevity. Exercise also triggers the release of Interleukin 6 (a molecule that plays a role in the immune system), which enhances glucose intake and promotes lipolysis, contributing to overall health. Additionally, regular physical activity can lead to positive epigenetic changes in gene expression, while splicing alterations associated with aging can be regulated through calorie restriction and exercise. Lastly, physical activity is associated with increased taurine levels, an amino acid which plays a role in slowing down cell aging. 

Drugs for longevity

Many drugs were presented. These included rapalogs called Next Generation Tornado, which inhibit a protein complex that tends to be dysregulated with age (TORC1). Claromer presented MXB-22,510, a potential substitute for the antimicrobial peptide LL-37, that shows promise in enhancing the immune system. Spermidine, through its role in enhancing CD8 functions and autophagy, may reduce the risk of memory loss and dementia in old age. Nicotinamide mononucleotide (NMN) has gained attention for its ability to increase NAD levels and prevent cellular senescence. Nintedanib is being explored as an anti-senescence drug. Quercetin and fisetin are being studied for their anti-inflammatory properties. These molecules represent exciting avenues in the pursuit of extending lifespan and promoting healthy aging. And last but not least 1500 mg of Metformin per day for those over 50 could have a positive impact on cancer, diabetes, and long COVID.

A few blind spots

It can be regretted that the global decrease in life expectancy (see our last newsletter) was practically never approached during the conferences.

In the same « not concrete enough » perspective, sadly most of the interventions concerning new therapies and how promising they are, are short of proving real progress of life expectancy in mice (and even less in humans). It is sometimes spectacularly disappointing that measures by biomarkers sustain strong affirmations of longevity, but not confirmed by measures of real longevity.

Luckily, there are exceptions, the biggest one being the experiment made with 1,000 old mice by the Longevity Escape Velocity Foundation.

Gene therapies, regulation of metabolic pathways and expression of genes.

The gene therapy received by Liz Parrish focuses its action on telomerase, which improves genomic stability, reduces senescence and may even prevent cancer, follistatin, which increases and improves muscle mass and reduces frailty, and klotho, an enzyme that optimises brain functions and eliminates the damage caused by oxidative stress

There have been many promising advancements in the field of rejuvenation. One of the most spectacular recent experiments approached during the conferences is the transfer of genes from naked mole rats to mice with a (moderate) life extension effect.

Also extremely promising is the research affirming that different chemical « cocktails » may restore a youthful genome-wide transcript profile and reverse transcriptomic age without compromising cellular identity. This should be far simpler than using the Yamanaka factors.

Conclusion: 

There were never so many and so interesting and diverse conferences in such a short time, never so much diversity of scientists, especially young individuals and women, and never so many sponsors and industrials actively working on longevity.

All this, more cooperation and the rapid rise of AI could announce golden times for human healthy longevity. This is in a relatively near future. 


The good news of the month: The quest for rejuvenation without reprogramming progresses


In 2012 Professor Shinya Yamanaka of Kyoto University won the 2012 Nobel Prize in Physiology or Medicine. He discovered that mature cells can be reprogrammed to induce pluripotent stem cells (iPSCs), which can differentiate into any type of cell by introducing 4 reprogramming factors (c-Myc, Klf4, Oct3/4, and Sox2).                                                                 

The scientists of the organization Clock.bio affirm that a cocktail of existing drugs may hold the key to restoring all the hallmarks of aging.


For more information

Heales Monthly Newsletter. The death of death N°172. August 2023. Decrease in life expectancy. After the Covid-19, (when) will the rebound come?

All my possessions for a moment of time.”

Attributed to Queen Elizabeth I on her deathbed, age 69, in 1603.


This month’s theme: Decrease in life expectancy. After the Covid-19, (when) will the rebound come?


Introduction

The average life expectancy has improved every year over the past 70 years, starting from the end of World War II. From around 1948, life expectancy surpassed the pre-war level. This means that concerning life expectancy (and also likely the average global wealth and happiness), each year was globally better than ever.

This seemed an unbreakable trend, even if life expectancy significantly decreased in some parts of the world. For example, the decrease in countries of the “European communist bloc” during the seventies of the last century and at the end of the 20th century in many African countries due to Aids didn’t interrupt the global trend.

But Covid-19 changed the situation dramatically, which many of us, especially longevists, still underestimate. 

Statistics

To fully understand the situation, these are the global data:

Between 2000 and 2019, life expectancy increased by more than 5 years.

In 2020 and 2021, we lost about one-third of this, returning to the situation around 2013. Patrick Heuveline in Population and Development Review wrote: After 69 years of uninterrupted increase from 1950 to 2019, the global life expectancy is estimated here to have declined by -0.92 years between 2019 and 2020 (for both sexes) and by another 0.72 years between 2020 and 2021.

The worst situation among the big industrialized countries is undoubtedly in the USA. This is the country with the highest budget in the world used for health (in absolute terms, per inhabitant, and in percentage of the GDP). This is the country with the most (reputed) scientists in the world. Still, life expectancy dropped to the level it was at the end of the 20th century (1996)!

We do not have much information concerning the evolution of 2022. However, we have relatively good data for European countries. We can say that the situation in this continent seems not to worsen anymore but also (still?) not going back to the pre-COVID situation. We know, for example, that life expectancy decreased in Denmark, was stable in Belgium, and was slightly improving in France.

To follow the evolution of the last months, the site Momo is monitoring  European MOnthly MOrtality activity, aiming to detect and measure excess deaths related to seasonal influenza, pandemics, and other public health threats. The last months seem back to (but not better than) the pre-COVID situation.

Primary Cause: COVID 

In 2020, the Centers for Disease Control and Prevention reported ten leading causes of death for adults aged 65 and above:

    1.  Heart disease: 556,665 
    2. Malignant neoplasms: 440,753 
    3. COVID-19: 282,836 
    4. Cerebrovascular: 137,392 
    5. Alzheimer’s disease: 132,741 
    6. Chronic lower respiratory disease: 128,712 
    7. Diabetes mellitus: 72,194
    8.  Unintentional injury: 62,796 
    9. Nephritis: 42,675 
    10. Influenza and pneumonia: 42,511

Of course, Covid-19 is new in this list compared to the former years. The number of victims is probably an underestimation.

Direct and Indirect medical consequences

Long Covid

Long COVID is of particular concern among older people (i.e., 65 years or older), who are at greater risk of persisting symptoms associated with COVID-19. In addition, this disease might trigger or exacerbate chronic conditions commonly in older people, such as cardiovascular diseases, respiratory diseases, neurodegenerative disorders, and functional decline. In addition, the disruptive effects of COVID-19 on older people should not be underestimated; lockdowns and other restrictions might have reduced the social interactions of older people, and they are also likely to have lost a spouse or loved one during the pandemic, which can contribute to mental and physical decline.

No rebound effect, at least until 2022

Logically, after the high death toll of COVID-19, there should be a “rebound effect” because « weak people » were « eliminated. » and « strong people » survived. Such an effect was not established, probably among other things, because of the negative consequences of the long covid.

Deficit of other medical interventions

Due to the COVID-19 crisis and all measures to prevent contamination, it has been challenging to have normal handling of many other diseases, especially in rich countries, and to keep the rhythm of vaccination, especially in poor countries. It is also probable that the trust concerning vaccination has been decreasing.

No rise in suicides in the older population

It was thought by many that the lockdown, restrictions and crisis would cause a surge in suicide. This was globally not the case as far as we know (statistics concerning suicides are not always reliable). 

Other possible causes of the decrease in life expectancy are food, (air) pollution, and other environmental aspects.

Sadly, Covid-19 is not the only reason, and we could have a reduction in longevity. There are at least three reasons to be pessimistic.

Firstly, obesity and too-processed food. Eating processed and refined foods can lead to weight gain and obesity because they are typically low in protein and high in fats and carbohydrates. This can cause people to overeat these foods to satisfy their body’s protein needs. During the last decades, on one side, the quality and quantity of food have been constantly improved, and very toxic substances are far less present. But new substances and « toxic cocktails » can gradually accumulate.

Secondly, Air pollution: Similarly to food, air pollution is at the same time less a problem and more a problem. It is less of a problem, especially in Europe and North America, because very heavy pollution, fast and lethal, is less present. For example, the Great Smog of London killed thousands of people in 1952, But it is more of a problem concerning long-term effects due to small particles, microplastics…

One of the most potentially worrying aspects of global health is the global decrease of the population of arthropods (insects and arachnids) in most parts of the world. This is very worrying because insects are supposed to be relatively resistant to many substances. Their number seems to decrease even in regions where natural spaces are improving. We do not know why this happened, but one of the causes is most probably the global rise of polluted substances.

Of course, this could affect humans in the future. Maybe the rise of some substances or « toxic cocktails » already impacts us without noticing, except through weak signals like allergies.

Last but potentially not least, global warming is increasingly killing people. There is no negative global impact yet because, at the moment, there are more people dying of situations related to (too) cold situations than (too) warm situations. However, this could dramatically change when global warming will provoke higher and longer heat waves. 

Conclusion: What could longevists do?

Covid-19 was not only a bad news concerning the struggle against senescence. Covid-19 was more related to aging than most communicable or non-communicable diseases. This disease pushed States, international organizations, and health authorities to invest more in prevention, research, and economic measures than for any other disease. 

“We civilizations now know that we are mortal” wrote Paul Valery in 1919, at the end of the World War I. About one century later, we know that even fast scientific and medical progress can coexist with decreased health (and wealth). 

To inverse this, we should be better organized, less bureaucratic, and more transparent, use fewer patents and IP, and really share more knowledge in an open-source vision.

We also need to think about resilience and health more systematically. We need data that is more reliable and really accessible for scientists, with more clinical trials. The results, bad, good, and even non-significant, must be available to open avenues (if positive), to close doors (if negative or neutral), and to be further analyzed and curated thanks to the Artificial Intelligence of today and tomorrow.

It could be that the decrease in wealth is temporary, where the accumulation of knowledge doesn’t stop. The negative snowball effect could stop. However, this is not sure. We could be generous to the citizens to rise again collectively as fast as possible. This is also generosity to our future senescent self.


The good news of the month: The mortality rate of naked mole rats does not increase with age


Most small mammals have a short life span. Naked mole rats are among the exceptions. The oldest known naked-mole rat is almost 40 years old, living ten times longer than the oldest mouse or rat.

But there is more positive news. These rodents have been followed for many years; until now, they do not seem to age. More precisely, even if there are some signs that they get old, the known statistics establish that their probability of dying doesn’t increase at all with age. This was already announced in 2018 and was firmly confirmed with data from the same group of animals a few days ago.


For more information

Heales Monthly Newsletter. The death of death N°171. July 2023. How longevitists could share their health and research data

Everything in human history starts out as Science-Fiction. For thousands of years, man has dreamed of flying, and today we fly without paying attention. (…) If we don’t destroy the planet first, what we’re about to see is phenomenal.

(Journalist) So it’s good news? It’s great news. We’re going to merge with technology, which will allow us to live longer and make us smarter. We urgently need to use AI to solve our problems. (…)

-Jeanette Winterson, novelist (translation, source)


This month’s theme: How longevitists could share their health and research data


Introduction

Written language was probably invented to record data more than five thousand years ago. In 2023, each day, we store more data than was conserved during the whole history of humanity before the 20th century. Today, about 30 % of all this data is health data. Medical data about older people, especially in rich countries, is stored for decades in hospitals, and medical laboratories,… and is generally available electronically. It contains detailed data available about hundreds of millions of people. Even better, we now have basic information for the large majority of the inhabitants of the planet (date of birth, vaccination, number of children, main disease and at the end of life, cause and date of death, …). 

In other words, we do not only need data, but first, we need to better share and curate health data. To analyze those data and progress modestly against senescence, we already have tools. In other words, we do not only need better AI for health, we need to have better access to it.

Those questions were already approached in a newsletter 3 years ago. Fortunately, progress is fast, among other things at the European level and also -of course- concerning AI tools.

Access to data: Right to share Scientific Advancement and Intellectual Property Rights

The right to health is a universal right, one of the basic conditions for the right to life. Article 27 of the Universal Declaration of Human Rights establishes the right of everyone to « share in scientific advancement and its benefits ». Similarly, Article 15 of the International Covenant on Economic, Social, and Cultural proclaims the right to « enjoy the benefits of scientific progress and its applications ».

However, international conventions and national laws also create rights related to the protection of the interests of the authors of scientific work. In the medical field, this concerns patents, but also many other complicated rules related to intellectual property.

In theory, patents exist to make an invention known to everybody while protecting the rights of inventors and encouraging them to pursue as many inventions as possible. Practically, concerning medical research, investors generally use it to sell drugs and products invented by others. The information related to the results is often kept partly secret, so that it is more difficult for others to violate the patent rights, but also to create similar or better products.

Concerning data related to the research:

  • « Positive » results will be only made public as much as absolutely necessary for the patents. Worst, they will often only be made public when the patent is available because if the information is communicated, the patent could be refused.
  • « Negative » results will not be made public because they are not useful for the patents. Worst, they will often be kept secret because of bad publicity related to « failures » of the research.

Privacy, security, informed consent

In this part of the newsletter, we will mainly approach questions related to the European Union and the USA. China and other countries approach these situations in very different ways.

In theory, most European citizens should have access to their own health data. They should also have the right not to share it without informed consent thanks to the famous General Data Protection Regulation (GDPR). Some categories of data are better protected because they are more « sensitive » and health data is among those categories. Finally,  in theory, informed consent is not necessary to use health data in some circumstances, one of them is scientific research.

However, practically in many European places, the situation is very different and can be summarized as:

  • The citizens often do not have access to their own medical data in a simple way. In Belgium, for example, the right to access files does exist, but not yet the right to access an electronic file.
  • The citizens do not have the opportunity to participate in medical experimentation and share knowledge scientifically, even if he or she wishes to do so out of personal or collective interest and even if he or she has given explicit informed consent. It is possible to participate in clinical studies, but in most cases, the results will not be shared or will be patented.
  • Researchers do not have access to the detailed health data of most citizens and they have often to pay to access information.
  • Medical data is often the subject of opaque and self-interested commercial transactions. As indicated above, « positive » results can be kept secret to be sold later. « Negative results » can be kept private, because they are not helpful and even could be bad for some companies selling some products.
  • The development of research using artificial intelligence and « massive medical data » is slowed down, as biased and sold data potentially contains more inaccuracies.

In the USA, the situation is well described by the renowned lawyer Orly Lobel: Privacy—and its pervasive offshoot, the NDA (non-disclosure agreement)—has also evolved to shield the powerful and rich against the public’s right to know. (…) But there is much more health information that needs to be collected, and privileging privacy may be bad for your health.

Curation

Data curation is a process that improves data that doesn’t meet a quality standard due to missing or incorrect values, thereby reducing the amount of unusable data. This process includes activities like data selection, classification, validation, and remediation of disparate data that comes from multiple sources.

The curation of health data is extremely complicated

There is no single system. Healthcare data originates from multiple sources—and to/from different departments or organizations. Healthcare data exists in myriad formats: paper, digital, images, videos, text, numeric, and more, with little or no standardization. Data structure (or lack thereof) varies.

Some of the data in a health record is entered and captured into fields that can be validated and aggregated, but other information like free text and notes cannot be easily categorized. 

The data is variable and complex. Information from claims data is more standardized; however, not complete as it does not tell the full patient story. But clinical data is more variable and subjective to provider interpretation.

Regulatory requirements are constantly changing. Reporting requirements for agencies continue to evolve and increase, making some data or transmission modes obsolete or less valuable.

Conclusion: What could longevists do?

We live in fascinating times. We have more data than ever. Thanks to the fast progress of AI (and potentially AGI), the search for therapies thanks to data is considerably facilitated. However, due to privacy and patent rules and profit constraints, we are not able to collect and curate enough health data.

Longevists should now publish more information on public places with as much information about how the data was collected and curated as possible.

In the longer term, we could collectively create a system that longevists and scientists can trust, managed by a non-profit organization where by default (opt-out) health data (anonymized or pseudonymized) would be stored and used for research purposes only.

The ultimate goal is, of course, to enable everyone to want to live longer, healthier lives.


The good news of the month:  Discovery of chemical means to reprogram cells to a younger state. Genetic treatment improves cognitive function for old monkeys.


Using Yamanaka factors as the basis, a research team at Harvard Medical School recently published a study showing that they have identified six different chemical cocktails, which, in less than a week restore a youthful genome-wide transcript profile and reverse transcriptomic age without compromising cellular identity.


The next important step would be to introduce rejuvenated cells in old mice (or other animals) and measure their lifespan compared to a control group.

A study published in Aging Nature establishes that recombinant Klotho Treatment Improves Cognitive Function in Old Rhesus Macaques. This gives very good hope that future rejuvenation genetic treatments for humans could not only slow down and hopefully later rejuvenate our bodies but also our brains.    


For more information

Heales Monthly Newsletter. The death of death N°170. June 2023. Longevity, Blue Zones, and Adapted Housing

This doesn’t mean we won’t die. But all age-related ailments will one day be eradicated. We’ll be able to stay younger for longer, »

Jean-Marc Lemaitre, Director of Research at Inserm and co-director of the Institute of Regenerative Medicine and Biotherapies in Montpellier. (Translation. Le Figaro. June 18, 2023).


This month’s theme: Longevity, Blue Zones, and Adapted Housing


Introduction

According to the WHO, aging, as it develops now, presents both challenges and opportunities. It will increase demand for primary health care and long-term care, require a larger and better-trained workforce, and intensifies the need for physical and social environments to be made more age-friendly. 

Yet, these investments can enable the many contributions of older people – whether it be within their family, to their local community (e.g., as volunteers or within the formal or informal workforce), or society more broadly. Societies that adapt to this changing demographic and invest in healthy aging can enable individuals to live both longer and healthier lives and for societies to reap the dividends.

Blue Zones (already approached in a newsletter in 2021)

The island of Okinawa, Japan; parts of Sardinia; Nicoya, Costa Rica; Ikaria, Greece, and Loma Linda, California are dubbed blue zones (a concept coined in 2005,) where people live the longest and they are healthiest: The concept of blue zones grew out of the demographic work done by Gianni Pes and Michel Poulain outlined in the Journal of Experimental Gerontology, identifying Sardinia as the region of the world with the highest concentration of male centenarians (even if extreme ages could also be explained by bad birth data).

Whilst diet, exercise, and sleep are key factors in longevity, there are other lifestyle traits that Blue Zone inhabitants follow. Having a good social network is intertwined with Blue Zone communities and you will often find grandparents still living with their families. Studies have shown that those who look after their grandchildren are more likely to live longer. Similar to this, communities have strong social networks and each of these lifestyle factors has been linked to living a longer and healthier life.

In addition to exercising and following an adequate diet, sleep is another deciding factor in longevity. Blue Zone inhabitants ensure they get enough sleep during the night and you will often find them taking short naps during the day. In Blue Zones, people tend to listen to their bodies, rather than having set sleeping hours. They sleep as much as their body tells them to. “They discovered that naps as short as twenty-six minutes in length still offered a 34 percent improvement in task performance and more than a 50 percent increase in overall alertness.”

In Blue Zones, exercise is built into everyday life, rather than having a set time for the gym, or to go on a hike. Inhabitants exercise through their daily tasks such as cooking, walking, and gardening. A study was done on men living in Sardinia and it found that raising their farm animals, living on steep slopes, and walking long distances to work was associated with living longer. Benefits from other studies have shown that exercise reduces the risk of cancer, heart disease, and death overall.

Fasting is common in those communities. Intermittent fasting is one of the most well-known types. This involves fasting for certain hours of the day, particular days of the week, or consecutive days of the month. Fasting has been shown to lower blood pressure, reduce weight, and lower cholesterol.

Those who live in Blue Zones often eat a diet that is heavily plant-based. Typically, most of the population are not vegetarians but will limit their meat consumption to around 5 times a month. Their diets tend to be 95% plant-based and they contain vast amounts of vegetables, legumes, whole grains, olive oil, and nuts. In places such as Icaria and Sardinia, inhabitants will often eat substantial amounts of fresh fish. This tends to be high in Omega 3, which is important for keeping your brain and heart healthy. Commonly, those living in Blue Zones follow a calorie-restricted diet, which has been shown to increase longevity. Eating too many calories can lead to weight gain and chronic diseases.

Variety of Retirement Houses

If we were able to live in perfect housing for all who live, how many years of (healthy) life expectancy would we win? Are retirement houses better places for a longer life than being at home with (younger) family members? Or is it the other way around?

Retirement Villages are larger settlements that have been established as an important form of housing provision for older people in the USA, Australia, New Zealand, and South Africa for the last forty years or more, and in some cases, particularly in Florida and Arizona, these settlements can be very large indeed with up to 5000 dwellings. This scale of settlement, a possibility in areas where land is relatively cheap and where planning laws are relatively unrestrictive, means that lavish communal facilities –  golf courses, pools, tennis courts, fitness centers, and much else – can be economically provided and it is these facilities which generate demand for such housing, particularly among the younger retired. Downsizing for those in their late 50s is very much more common in the USA than it is for instance in the UK and this trend is reinforced both by the fact that US  local taxes are very much lower out of town and by the huge climatic advantages that Arizona and Florida can offer.

Another huge advantage of larger retirement settlements is that care can be provided very flexibly as residents get older and frailer either within individual homes by care workers operating from a central hub or in care homes and supported housing provided within the overall retirement complex.

Independent Living services are supposed to offer residents the freedom to live their lives as they see fit, to accommodate their residents’ unique needs. Independent Living is meant to combine the familiar comforts of home with the excitement of new experiences.

Study on personal control and aging in a nursing home, residents who were instructed to think of themselves as more independent and had more responsibility for their daily activities, rather than relying purely on caregiver or nursing staff, lived longer than those who were treated just as nicely but were not provided with activities that would increase their perceived independence. The study demonstrated a significant improvement in the experimental group over the comparison group in alertness, active participation, and a general sense of well-being. 

In a ‘counterclockwise’ study in 1979, the design included eight older men who lived together for 5 days on a retreat as if they were living 20 years back in time (ie, in 1959). This experience resulted in improvements over the baseline on several measures. Hearing, memory, and grip strength improved. 

This collective environment could be also the ideal place for collective studies of new treatments for longevity. This happens far from enough yet, however.

Conclusion

Our environment contributes strongly to the length of our lives. One important aspect is the level of wealth, but many other aspects are important as well. The USA is by far the country with the most medical scientists and the biggest part in percentage and in absolute terms of the GDP used for health. However, life expectancy in the US is far behind most European countries and Canada, but also in some poorer countries.

This means that significant progress toward a longer, healthier life does not require major funding. But we do need more research, more data, and more clinical trials with well-informed elderly people to « reuse » what can be reused, and also to detect/debunk sometimes over-optimistic visions. These studies could also help to detect « weak signals » that could lead to more radical developments in longevity.


The good news of the month:  Taurine supplementation slows aging and extends lifespan in mice


Taurine is an acid widely distributed in animal and human tissues. The concentration diminishes with age. It is now established that supplementation is useful for healthy longevity for mice. A publication in Science mentions that the median life span of taurine-treated mice increased by 10 to 12%, and life expectancy at 28 months increased by about 18 to 25%. 

In this domain, like in many others, clinical trials on well-informed aged volunteers should begin fast.


For more information

Heales Monthly Newsletter. The death of death N°169. May 2023. Declining Immunity in Older Population

 

There’s no shame in waging war on old age (…) Conquering diseases that appear among elderly people will eventually make life better for everyone Martha Giill. The Guardian May 20, 2023.


This month’s theme: Declining Immunity in Older Population


Introduction

Our bodies would be incredibly fragile without an immune system. The capacity to distinguish between « good and bad », friend or enemy » is extraordinary. Sometimes, this system is not able powerful or clever enough to stop « unamical aliens ». Sometimes, the system attacks bodies that are not enemies. Sadly, the number of those inefficiencies rises with age and is one of the reasons we die of diseases related to old age.

The effects of the aging immune system (immunosenescence) confer immune dysregulation and have both cellular and humoral aspects. Studies show depletion in lymphocyte reserve with increasing age, in particular with fewer naive T cells (not yet exposed to antigens).

Serum levels of lgG and lgA are increased with age, which is conducive to protecting against viral and bacterial infections effectively in older people. Although the generation of naive T/B cells continues to decline, the adaptive immune system adjusts to age-related changes and protects the body from most pathogens. Only later in life does the immune function decline gradually, which increases morbidity and mortality in the elderly 

Differences in the immune system of Elderly and Centenarians

Compared with the elderly, centenarians have more anti-inflammatory molecules, cytotoxic T cells, highly differentiated CD8+T cells and naive B cells, and well-preserved Natural Killer cells, which would be the hallmark of « successful » aging. In centenarian offspring, the number of B cells decreases significantly, but naive B cells and IgM increase, which might be one of the reasons for resisting infection and prolonging lives.

As one grows older, your immune system does not work as well. The following immune system changes may occur: The immune system responds slower. It increases your risk of getting sick. Vaccines don’t work as well or for as long. An autoimmune disorder may develop. This is where the immune system mistakenly attacks and damages or destroys healthy body tissue. Dysfunction of the immune system with age creates inflammation called inflammaging. Healing is slower as there are fewer immune cells in the body to bring about healing and the immune system’s ability to detect and correct cell defects also declines. This results in an increased risk of cancer.

The decline in Thymus; Affects the B and T cell Production

The effects of aging on the immune system are widespread and affect the rate at which naive B and T cells are produced as well as the composition and quality of the mature lymphocyte pool. Declines in lymphopoiesis are influenced by age-related changes in the environment. The precise, age-related environmental factors that result in the depletion of lymphoid-biased HSCs have not been identified, although changes in levels of transforming growth factor β-1 might be involved

At birth, the immune system is equipped with an enormously diverse repertoire of antigen-reactive T and B cells, all of which are so infrequent that they cannot protect the host. Thus, as humans age and are exposed to infectious organisms and cancerous cells, antigen-specific lymphocytes need to expand massively in frequency and switch from a highly proliferative naive cell into a less proliferative effector and memory cell.

Aging is associated with several comorbidities that finally lead to organ failure and death. With the progressive deterioration of protective immunity, older individuals become susceptible to cancers and infections). Interestingly, aging is also associated with an increased incidence of inflammatory disease, most notably cardiovascular disease). Many of the degenerative diseases of the elderly, such as Alzheimer’s disease, Parkinson’s disease, and osteoarthritis, have a vital component of tissue-damaging inflammation. Similarly, the production of autoantibodies is much more likely to occur in older individuals. In essence, immune aging is associated with declining protective immunity combined with an increased incidence of inflammatory disease. There are two main approaches to T cell-based immunotherapy: HLA-restricted and HLA-non-restricted immunotherapy. Significant progress has been made in T cell-based immunotherapy over the past decade, using naturally occurring or genetically engineered T cells to target cancer antigens in hematological malignancies and solid tumors. However, limited specificity, longevity, and toxicity have limited success rates. One of the few positive aspects of aging is that a long life exposes the body to many different pathogens and so enables this body to create more specific antibodies. 

Older adults age 65 or older represent the growing majority of patients diagnosed with cancer. However, older adults are under-represented in clinical trials in general, as well as in the landmark studies that led to the approval of these immunotherapy agents. Because of increasing age, multimorbidity, and impaired functional status, many of these patients seen in community-based oncology practices are not eligible for such studies. Thus, the results of these studies are difficult to generalize to an older patient population with these competing risks. 

TRIIM study was held at Stanford University by Gregory M. Fahy and his team from 2014 to 2015 with two cohorts. The main aim was to regenerate the thymus with a novel drug combination of hormones like Growth Hormone and DHEA (Dehydroepiandrosterone), as well as Metformin. The results showed protective immunological changes, improved risk indices for many age-related diseases, and a mean epigenetic age approximately 1.5 years less than baseline after 1 year of treatment (−2.5-year change compared to no treatment at the end of the study). Using an epigenetic clock called GrimeAge, they also showed a 2-year decrease in epigenetic vs. chronological age that persisted six months after discontinuing treatment

Conclusion

We all saw that the elderly with COVID-19 showed much more rapid clinical progress, high incidence, and mortality compared to the younger population. This was accompanied by heavy systemic inflammation and tissue damage, which would be related to immunosenescence. 

Boosting the immune system by regularly exercising, eating healthy, and suppressing the use the alcohol and smoking can decrease the rate of aging of the immune system. Taking safety measures to prevent injuries and falls is also important as a weak immune system can slow the healing of wounds. In the longer term, we need therapies able to rejuvenate the immune system, especially the thymus. 


Good News of the Month: Dior wants to reverse old age.


Dior announced the creation of an International Reverse Aging Scientific Advisory Board (RASAB). The first goal is to rejuvenate the skin, but the longer-term goal is the rejuvenation of the whole body. Dior has an entire team dedicated to this goal.


For more information

Heales monthly newsletter. The death of death N°168. March-April 2023. Organizations for Healthy Longevity

 

It’s likely that we’re just another 6 years away from the point that the general public will hit longevity escape velocity.

Peter H. Diamandis, tweet, March 14 2023


This month’s theme: Organizations for Healthy Longevity


Introduction

From small startups and NGOs to enormous private and public organizations, the field of longevity institutions is large and changing constantly.

In this newsletter, we will give you a list of the main groups divided into categories. Many of them are active in more than one category, and the choice of the category is often subjective. For each organization, you will find a few words of explanation, often with the name of the most well-known representative(s). Should, in your opinion, an important organization be missing, let us know, Heales will probably have a longer list update.

 

Very big organizations

These are the biggest organizations in the field in terms of investments announced. We speak here about billions of dollars. The organization that only financing activities are mentioned in the category « funding organizations »

  • Google Calico. Focusing on both basic research and the translation of our discoveries into new interventions that can help people live healthier, and maybe longer, lives.
  • Chan Zuckerberg Initiative (not « officially » longevity). It was founded in 2015 to help solve some of society’s toughest challenges — from eradicating disease and improving education to addressing the needs of our local communities.
  • Altos Labs. Restore cell health and resilience through cellular rejuvenation programming to reverse disease, injury, and disabilities that can occur throughout life.

Clinical Trials

These organizations are really testing therapies on humans or on animals or planning to do so very soon

  • BioViva Science (Liz Parrish). BioViva is committed to lengthening healthy human lifespans with AAV and CMV gene therapy (works with Integrated Health Systems
  • Longevity Escape Velocity  Foundation. Exists to proactively identify and address the most challenging obstacles on the path to the widespread availability of genuinely effective treatments to prevent and reverse human age-related disease. 
  • Rejuvenate Bio (George Church). Will make dogs (and later humans) “younger » by adding new DNA instructions to their bodies.
  • Dog Aging Project  The goal of the Dog Aging Project is to understand how genes, lifestyle, and environment influence aging. We want to use that information to help people increase their healthspan, the period of life spent free from disease.
  • Loyal for Dogs (Celine Halioua). Loyal is a clinical-stage veterinary medicine company developing drugs intended to extend the health span and lifespan of. 

Public organizations

Sadly, not one public organization in the world has the explicit goal of extending the maximal healthy lifespan of humans. But a few public organizations work actively on aging. 

  • European Health Data Space (EHDS). Support individuals to take control of their health data, support the use of health data for better healthcare delivery, better research, innovation, and policy making, and enables the EU to make full use of the potential offered by a safe and secure exchange, use and reuse of health data
  • National Institute of Aging (USA). Lead a broad scientific effort to understand the nature of aging and to extend healthy, active years of life. The Interventions Testing Program (ITP) is a peer-reviewed program designed to identify agents that extend the lifespan and health span in mice.
  • Institut Pasteur de Lille, Founded in 2003 by Prof Miroslav Radman and Prof Marija Alačević, is a research center, which mobilizes 34 research teams and aims to decipher the essential physiopathological mechanisms of the most impacting diseases,  particularly infectious ones, to understand these diseases, slow down their development and imagine the treatments of tomorrow.

Start-ups

Many start-ups as an explicit goal to extend the healthy life expectancy of humans. In this list, we mention only those who progressed already or seem to be able to progress in the relatively near future. Of course, these are for profit-organizations, which means they often sell products, have non-disclosure agreements, and want to create profitable synergies with others. 

  • Retro Biosciences. The mission is to add 10 years to a healthy human lifespan We’re starting with cellular reprogramming, autophagy & plasma-inspired therapeutics.
  • Apollo Ventures (Alexandra Bause and James Peyer). Apollo Health Ventures develops interventions with the potential to prevent or reverse age-related diseases and extend a healthy human lifespan.
  • NewLimit (Brian Armstrong and Blake Byers). Biotechnology company working to radically extend the human health span through epigenetic reprogramming. 
  • Oisin Biotechnologies. A startup aiming to rid bodies of senescent cells using gene therapy (founded by the SENS Foundation).
  • Rejuve (Ben Goertzel). The AI Longevity Network builds a decentralized network of researchers, clinics, and data contributors working together to arrive at breakthrough discoveries in the fight against aging while making the resulting solutions affordable and accessible for all
  • Deep Longevity (Alexander Zhavoronkov, see also In Silico). Developing explainable artificial intelligence systems to track the rate of aging at the molecular, cellular, tissue, organ, system, physiological, and psychological levels. 
  • In Silico Medicine (financed by Deep Knowledge Ventures). The mission is to extend healthy productive longevity by transforming drug discovery and development with artificial intelligence software, significantly reducing the time and cost to bring life-saving medications to patients (Deep Knowledge Life Sciences, Deep Knowledge Analytics – DKA Biogerontology Research Foundation (BRF), Aging Analytics Agency) (See also Longevity International, Longevity book (Dmitry Kaminskiy), Longevity A.I. Consortium.

Institutes and Research Centers

These organizations work on the study of aging

  • Salk Institute (Juan Carlos Izpisua Belmonte). The Institute is an independent nonprofit organization and architectural landmark: small by choice, intimate by nature, and fearless in the face of any challenge. Be it cancer or Alzheimer’s, aging, or diabetes.
  • Buck Institute for Research on Aging, Mission is to end the threat of age-related disease for this and future generations.
  • Glenn Consortium for Research in Aging (11 centers). To extend the healthy years of life through research on mechanisms of biology that govern normal human aging and its related physiological decline, to translate research into interventions.
  • Life Biosciences (David Sinclair and Nir Barzilai). Research and development on therapeutics for human health. (See also Elixir Pharmaceuticals and Sirtris Pharmaceutical)

Aging can be redefined. We’re leading the way. Life Biosciences is developing innovative therapies to transform how we treat diseases by targeting aging biology.

  • Young Blood Institute (Mark Urdahl). Studies of new medical uses for well-established blood plasma replacement immunotherapies have recently indicated the previously undocumented potential to restore senescent immune systems and prevent many age-related diseases. 
  • Mediterranean Institute for Life Sciences (Miroslav Radman). Independently funded, international, non-profit research institute. Led by enthusiastic professionals, we strive to create and sustain a top-quality research environment for both international and local exceptional scientists.
  • Geron (Michael West). Research, experiment, adapt, and even defied conventions in pursuit of new possibilities for patients. Driven by the big idea behind telomerase inhibition – that you can kill cancer cells by targeting the enzyme that drives their uncontrolled growth.
  • Bakar Aging Research Institute (BARI). A scientific community that aims to translate breakthroughs in aging research.
  • Elveflow (Guilhem Velve Casquillas). Believe that microfluidics is the backbone of the ongoing biotech revolution. Aim at making it accessible to every scientific or engineering team. See also Elvesys.
  • Lyceum (Michael Rose). The laboratories at UC Irvine’s Department of Ecology and Evolutionary Biology are building new biology based on genomics, experimental evolution, and statistical learning. These are powerful tools for rebuilding biology, especially when used together.
  • Medical futurist. Medical Futurist Institute, the very first research institute specializing in digital health.
  • Lifespan Research Institute. Extend lifespan by discovering anti-aging compounds
  • Centre for Healthy Ageing (Andrea Maier, Brian Kennedy). The major focus of the Centre is to delay aging, prolong disease-free life as well as maintain high functionality and resilience.
  • The Conboy Laboratory (Irina and Michael Conboy). Engineering Longevity. Company rejuvenating plasmapheresis (blood plasma dilution).
  • Rejuvenate Biomed Research the biology of aging and identify opportunities to impact the aging process. Develop medicines that can positively influence molecular mechanisms that lead to age-related and degenerative diseases, also known as the hallmarks of aging.

NGOs

Many non for profit organizations as for the explicit goal of extending the healthy life expectancy of humans. In this list, we mention only those who progressed already or seem to be able to progress in the relatively near future. NGOs working mostly on advocacy are mentioned further in this document. 

    • LessDeath (Mark Hamalainen). Nonprofit with the mission to support the growth and effectiveness of the longevity industry’s workforce. Help aspiring longevity engineers start or advance their careers by providing education, career guidance, mentorship, experience, networking, and employment opportunities. Longevity Biotech Fellowship is a non-profit community for people to come together to build, join, or invest in revolutionary longevity biotechnology projects.
    • Longevity Research Institute (Joe Betts-Lacroix, Sarah Constantin, Jaan Tallinn). A health-span-expanding treatment for humans would prevent years of severe illness for billions of people. Plan to design, fund, and launch animal lifespan studies for the most promising longevity interventions.
    • BGRF (Biogerontology Research Foundation). Constituted as a charity in the UK to support the application of our knowledge of the mechanisms of aging to the relief of disability, suffering, and disease in old age
    • DataBETA Test-based DNA methylation for people testing anti-aging therapies.
    • Better Humans. World’s first specifically-transhumanist bio-medical research organization.
    • Wellcome : Good health makes life better. Want to improve health for everyone by helping great ideas to thrive. 
    • Church of Perpetual Life Mission is to assist all people in the radical extension of healthy human life and to provide fellowship for longevity enthusiasts through regular, holiday, and memorial services.

Advocacy and Information

Of course, most organizations inform and promote their own longevity goals and activities. Some groups are especially dedicated to informing scientists, stakeholders, and citizens.

  • Fight Aging (Reason). The source of information for longevity. The outgrowth of a similar initiative called the Longevity Meme that ran as a news service and online resource from 2001 to 2011. Fight Aging! continues in its stead.
  • Open longevity Community of rationally-minded people. We prefer life over death, especially young and healthy life. Against aging and support using a scientific approach to fight it.
  • Heales (Sven Bulterijs, Didier Coeurnelle). Inform and raise awareness about technological and medical developments in the field of biogerontology. Promote and support anti-aging research. Open up debates, question decision-makers, and propose a reassuring ethical framework.
  • Lifespan.io. Advocates for the development of medical technologies to rejuvenate aged tissues and organs. By directly targeting the aging processes, many age-related diseases might be prevented, delayed, or treated at once. By sponsoring, democratizing, and funding aging research, combined with responsible journalism, aim to accelerate progress toward this important goal for all humankind.
  • Longevity Technology. Well-developed website of information and the latest news in the field of longevity. 
  • Alliance for Longevity Initiatives (Dylan Livingston) (USA). Aims to bring together politicians from across the aisle to promote policy changes.
  • International Longevity Alliance (Daria Khaltourina). Help create a world where every person will be able to achieve aging amelioration and healthy longevity through innovative medical technologies. Promote the advancement of healthy longevity for all people through scientific research of ageing biology, and the development of new drugs and therapies.
  • Life Extension. Finding new ways to empower you to live a healthier, richer life— from innovative formulas to finding responsibly sustainable partners to supply our ingredients.
  • CureDAO. Community-Owned Platform for the Precision Health of the Future 
  • Longecity. The main hub is a forum that invites discussions of diverse topics: science, nutrition, lifestyle, and philosophy. Its features include messaging, subscriptions, ratings, keyword tags, and annotations.
  • The immortalist (Dinorah Delfin)  Publishing high-quality news articles, academic essays, & interviews featuring the movers & shakers of the Immortalists Revolution.
  • Longevity History (Ilia Stambler). History of fighting aging.
  • Longevity wiki. Offer the latest scientific findings on longevity. Be an accessible, objective, and unbiased source of information.
  • IDL International database on longevity. Collates information on deaths at age 105+ from countries with the reliable civil registry or equivalent systems.
  • Gerontology Research Group. A list of all the supercentenarians in the world. 

Biohacking

A few people are experimenting on themselves with longevity therapies and communicating the results

  • Rejuvenation Olympics (Bryan Johnson, Oliver Zolman). Public forum to share protocols and validated results for age rejuvenation. See also the Blueprint Project
  • Conquer Aging Or Die Trying! (Michael Lustgarten). Videos that are related to optimal health, fitness, aging, lifespan, and, Ph.D. data-driven attempts to biohack all of it. 

Funding and Prizes

Longevity research is expensive. To accelerate it, the most current way is funding. But the promotion is also organized by a « friendly » competition, by organizing prizes for longevity research.

  • Hevolution Foundation. Every human has the right to live a longer, healthier life. The organization announced one year ago that it was going to finance projects with one billion dollars a year.
  • VitaDAO. Decentralized collective funding for early-stage longevity research. 
  • Kizoo (Michael Greve). Provide mentoring, seed, and follow-on financing with a focus on rejuvenation biotech.
  • Life Extension Advocacy Foundation (LEAF) (Steve Hill). Promote the advancement of biomedical technologies which will increase a healthy human lifespan. By sponsoring and democratizing research efforts through crowdfunding and engaging the public. See also the Longevity Investor Network,
  • Longevity Xprize Community (Sergey Young). Study the future of longevity to discover innovative and accessible ways to radically extend everyone’s healthy lifespan. See also moralityofimmortality.com: moral aspects of reversing aging
  • Longevity Vision Fund (Sergey Young). Venture capital fund that invests in technologies with the potential to disrupt life sciences and healthcare to help people live longer and healthier lives. The fund’s mission is to accelerate longevity breakthroughs and to make them more accessible and affordable to everyone.
  • Juvenescence (Jim Mellon). A team of scientists, and pharmaceutical and nutritional product developers have a window into the world of disrupting the aging market that no one could ever have imagined. Using cutting-edge technologies and leveraging the latest advances allow us to make bold scientific discoveries.
  • Palo Alto Longevity Prize (Joon Yun). A life science competition dedicated to ending aging.  It is one of a growing number of initiatives around the world pursuing this goal
  • Longevity Prize: a collaboration between VitaDAO, Foresight Institute, and the Methuselah Foundation. Aim to generate an avalanche of proposals, experiments, and collaborations on undervalued areas 

Cryonics

If longevity research is not going fast enough, there is maybe a plan B

  • TomorrowBiostasis (Switzerland – Germany). Founded by doctors, engineers, and entrepreneurs to further science and provide high-quality cryopreservation.
  • Cryonics Institute (USA) is an American nonprofit foundation that provides cryonics services. CI freezes deceased humans and pets in liquid nitrogen with the hope of restoring them with technology in the future.
  • Alcor (USA) is the world leader in cryonics, cryonics research, and cryonics technology. Alcor is a non-profit organization located in Scottsdale, Arizona, founded in 1972, to help bring cryonics to the world. 
  • Kriorus (Russia) was established as a Russian Transhumanism Movement project by 8 founders. 

Products and Therapeutics

These organizations affirm that they have products that are already making longer and healthier lives possible. 

  • DoNotAge. Longevity partner. Provide quality health products.
  • Elysium Health: Translate critical scientific advancements in aging research into accessible health products and technologies. 
  • One Skin.(Carolina Reis Oliveira). Pioneering technologies aimed at extending human health span.
  • Novoslab (Kris Verburgh) Novo leverages science and data to create the best nutraceuticals to extend the human lifespan.
  • Ageless Partners worldwide health services company that helps clients to decipher the key mechanisms and root causes of aging through various product offerings 
  • Cambrian (James Peyer). Biopharma developing new therapies to extend healthy lifespans, bringing proven expertise to teams worldwide.
  • AgeX Therapeutics, Development of novel therapeutics targeting some of the largest market opportunities associated with an aging population.
  • Age Reversal Network.Human Age Reversal Project.
  • BioAge Labs (Kristen Fortney). Mapping human aging to develop a pipeline of therapies that treat disease and extend a healthy lifespan.
  • Longeveron Biological solutions for aging-associated diseases through the testing of allogeneic human Mesenchymal Stem Cells (MSCs)
  • Human Longevity Incorporated (Craig Venter, Peter Diamandis) helps to live a healthier, longer life. They designed a leading-edge precision healthcare program using today’s best technology to detect and help preempt cancer, cardiac, metabolic, and neurodegenerative disease, and more.
  • Celularity. Lead the next evolution in cellular medicine by delivering off-the-shelf allogeneic cellular therapies.
  • Leucadia Therapeutics. Fight against Alzheimer’s disease. 
  • resTORbio  Clinical-stage biopharmaceutical company novel therapeutics for the treatment of aging-related diseases.(rapamycin).

Organizations mainly in another language than Eglish 

Most organizations work mostly for the biggest part in English. Here are a few exceptions

  • Open longevity (in both Russian and English) working on all projects related to longevity and extending lifespan. Open to collaborations and sharing data publicly. 
  • Longlonglife (in both French and English) working in close cooperation with the greatest research laboratories on themes that will push forward the research on aging.
  • AMIIF/ (in Spanish) The Mexican Association of Pharmaceutical Research Industries, Represents more than forty Mexican companies -with national and international capital with a local and global presence- leaders in developing pharmaceutical research and biotechnology.
  • Partei für schulmedizinische Verjüngungsforschung (in German) (Felix Werth). Single-issue party. With future medicine, through rejuvenation, people are likely to stop dying of old age diseases. To achieve this, much more government money should be invested in building and operating additional research facilities and in training more people.

And to go further, other lists:

Below, you will find some other lists of organizations.

Conclusion

Compared to 10 years ago, the field of longevity organizations is much larger and bigger. Competition, diversification, and emulation can be good for the progress of research.

However, it is important to favor transparency for a real sharing of knowledge. This newsletter is a small contribution to this necessity for the common good of healthy longevity. 


Bad News of the Month: Life expectancy in the European Union falls for the second year in a row.

Good News of the Month: Sam Altman (from Open.AI invested $180 million into a company trying to delay death.


Life expectancy in the European Union further decreases, following a larger drop from 2019 to 2020. Compared with 2020, life expectancy for both women and men decreased by 0.3 years. Life expectancy is in 2021 82.9 years and 77,2 years for men. At the country level, the highest life expectancy at birth was recorded in Spain (83.3 years), Sweden (83.1 years), Luxembourg, and Italy (both 82.7 years), while the lowest was in Bulgaria (71.4 years), Romania (72.8 years) and Latvia (73.1 years).

The startup called Retro Biosciences eased out of stealth mode in mid-2022, it announced it had secured $180 million to bankroll an audacious mission: to add 10 years to the average human life span. MIT Technology Review reveals that the entire sum was put up by Sam Altman, the 37-year-old startup guru and investor who is CEO of OpenAI. Altman spends nearly all his time at OpenAI, an artificial intelligence company whose chatbots and electronic art programs have been convulsing the tech sphere with their human-like capabilities.


For more information

Heales monthly newsletter. The death of death N°167. February 2023. Neurodegenerative Diseases and Aging

« I predict one day it will be normal to go to a doctor and get a prescription for a medicine that will take you back a decade ». Sinclair said at a California event.

“There is no reason we couldn’t live 200 years.” David Sinclair, who runs an aging-research lab at Harvard University, says the new therapies could allow people to live much longer than they currently do. 


This month’s theme: Neurodegenerative Diseases and Aging


Introduction

Among all diseases related to old age, Alzheimer’s disease is probably the most studied. Sadly, it is still also an incurable, very frequent disease.

Would all of us die of degenerative diseases if we were able to suppress all other causes of death related to aging? Probably, and this is not the funniest way to age and die (if there is one). And until now, all promising therapies have been globally unsuccessful even if they were promising discoveries to understand these diseases and even slow down the diseases on animal models.

We need more work, more clinical trials, and more imagination to progress in this domain.

Aging as a risk factor for neurodegenerative disease

The primary risk factor for most neurodegenerative diseases is aging, including Alzheimer’s disease (AD) and Parkinson’s disease (PD). Most individuals with AD are aged ≥65 years and its prevalence continues to increase with increasing age. Tissues composed primarily of postmitotic cells, such as the brain, are especially sensitive to the effects of aging. The disease progresses irreversibly and is associated with high socioeconomic and personal costs. The nine biological hallmarks of aging are genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, mitochondrial dysfunction, cellular senescence, deregulated nutrient sensing, stem cell exhaustion, and altered intercellular communication.
Aging is the main risk factor for most neurodegenerative diseases, including Alzheimer’s disease and Parkinson’s disease.

This Cognitive Trajectories and Resilience in Centenarians study was done on  340 self-reported cognitively intact centenarians. Forty-four of these participants went on to neuropathological study and testing was performed with a range for the sample of 0 to 4 years.

There are some important findings from this work. During 1.6 years of follow-up, no decline in cognitive function was observed except for a minor decrement in memory. This suggests that, among this sample of centenarians, the incidence of dementia was low and implies resilience or resistance to AD and related dementias, despite the facts that they have the most potent risk factor in the general population, extreme old age, and that brain amyloid-β and tau deposition generally increase with age.

Various studies support the hypothesis that centenarians benefit from protective mechanisms rather than enjoying a relative absence of neurodegenerative causative factors.

Alzheimer plaques and tau proteins …

Alzheimer’s disease disrupts transmit information via electrical and chemical signals. among neurons, resulting in loss of function. Damage is widespread, as many neurons stop functioning, lose connections with other neurons, and die. Alzheimer’s disrupts processes vital to neurons and their networks, including communication, metabolism, and repair. The beta-amyloid protein involved comes in several different molecular forms that collect between neurons. Proteins clump together to form plaques.

Neurofibrillary tangles are abnormal accumulations of a protein called tau that collects inside neurons. In healthy neurons, tau normally binds to and stabilizes microtubules. In Alzheimer’s disease, however, abnormal chemical changes cause tau to detach from microtubules and stick to other tau molecules, forming threads that eventually join to form tangles inside neurons. It appears that abnormal tau accumulates in specific brain regions involved in memory. Beta-amyloid clumps into plaques between neurons. As the level of beta-amyloid reaches a tipping point, there is a rapid spread of tau throughout the brain.

Tests on mice are promising but never confirmed

One difficulty is the clear inability of current animal models to represent the full range of events identified in human disease, for instance, neuronal loss. It should be noted that a recent report using a Drosophila model suggests that neuronal loss may be protective in AD. This opens the door to a novel hypothesis that if proven would be quite atypical as in other neurodegenerative conditions, e.g. Parkinson’s and Huntington’s diseases, where neuronal loss is the main neuropathological feature.

A new mouse model developed by RIKEN researchers could improve the situation that many compounds that showed promise in mice models of the disease subsequently flopped in clinical trials on people. Because they so rapidly developed the signature brain abnormalities associated with Alzheimer’s disease, the mice should allow researchers to efficiently screen disease-modifying therapeutic candidates.

Do women have more often the disease?

Women living longer than men are probably not the whole answer as to why women are more likely than men to develop the disease. Your chances of developing Alzheimer’s disease late in life are somewhat greater if you are a woman than a man. One study followed 16,926 people in Sweden and found that beginning around age 80, women were more likely to be diagnosed than men of the same age. And a meta-analysis examining the incidence of the disease in Europe found that approximately 13 women out of 1,000 developed Alzheimer’s every year, compared to only 7 men.

A possible reason:

  • The amyloid plaques that cause Alzheimer’s disease may be part of the brain’s immune system to fight against infections.
  • Women have stronger immune systems than men.
  • As part of their stronger immune systems, women may end up having more amyloid plaques than men.

Notably, mitochondria from young women are protected against amyloid-beta toxicity, generate less reactive oxygen species, and release fewer apoptogenic signals than those from men. However, all this advantage is lost in mitochondria from old females. Since estrogenic compounds protect against mitochondrial toxicity of amyloid-beta, estrogenic action, suggests a possible treatment or prevention strategy for AD

Possible therapies

Transplanted stem cells have shown their inherent advantages in improving cognitive impairment and memory dysfunction, although certain weaknesses or limitations need to be overcome. 

The transplanted neural stem cells compensate for the loss of neurons and have a direct effect on the recipient tissue. Moreover, these cells can produce paracrine cytokines to exert an indirect effect on neurogenesis. The function of transplanted cells can be enhanced through preconditioning. For instance, the transplantation of transplanted neural stem cells that express growth factors promotes neurogenesis and improves cognitive impairment can ameliorate spatial memory and slow learning deficits. However, the transplanted cells can also transdifferentiate into non‐neuronal glia, which is an adverse event. 

Organoids

Human neurodegenerative diseases, such as Alzheimer’s disease are not easily modeled in vitro due to the inaccessibility of brain tissue and the level of complexity required by existing cell culture systems. Three-dimensional brain organoid systems generated from human pluripotent stem cells have demonstrated considerable potential in recapitulating key features of AD pathophysiology, such as amyloid plaque- and neurofibrillary tangle-like structures. However, they fail to model complex cell-cell interactions of different regions of the human brain and aspects of natural processes such as cell differentiation and aging. 

First-in-Human Clinical Trial to Assess Gene Therapy for Alzheimer’s Disease

Researchers at the University of California San Diego School of Medicine have launched a first-in-human Phase I clinical trial to assess the safety and efficacy of a gene therapy to deliver a key protein into the brains of persons with Alzheimer’s disease or Mild Cognitive Impairment, a condition that often precedes full-blown dementia.

The protein, called the neurotrophic factor is part of a family of growth factors found in the brain and central nervous system that support the survival of existing neurons and promote the growth and differentiation of new neurons and synapses. This is particularly important in brain regions susceptible to degeneration in AD.

Deep brain stimulation for Parkinson’s

For people with Parkinson’s disease who do not respond well to medications, the doctor may recommend deep brain stimulation. During a surgical procedure, a doctor implants electrodes into part of the brain and connects them to a small electrical device implanted in the chest. The device and electrodes painlessly stimulate specific areas in the brain that control movement in a way that may help stop many of the movement-related symptoms of Parkinson’s, such as tremors, slowness of movement, and rigidity. This works, unfortunately only for a certain time.

Conclusion
We know more about neurodegenerative diseases and especially Alzheimer’s Disease than about other diseases that we can cure. However, we still ignore and must find answers to fundamental questions:

  • What is really starting the disease?
  • What is precisely accelerating the disease? 
  • Are the accumulation of tau proteins and amyloid proteins the cause or the consequence of the diseases (the answer is probably « both », but to what extent?)?
  • And of course, what are the working therapies to stop or at least slow down the disease

Good News of the month: Longest living (Sprague-Dawley strain) rat called Sima is 47 months old and is still alive.


Therapeutic that mimics young plasma could signpost the way to longevity wrote the Longevity Technology. The last oldest rat before this experiment died at 45.5 months and was under calorie deficit intervention, the one in the current experiment has therefore already lived longer. The Guardian quotes the well-known scientist, Prof Steve Horvath: “I think the results are stunning, Some people will criticize the results due to the low sample size. One swallow does not make a summer. But I believe the results because several complementary studies support them.” 

Heales sponsored the experiment by Harold Katcher and the startup Yuvan, where the product E5 is purified from younger animals and given to 24-month-old female rats for rejuvenation purposes. 


For more information